莫比乌斯反演2

题目戳这里(洛谷P2257)

题目描述

给定 N, M 求 1 ≤ x ≤ N,1 ≤ y ≤ M 且 gcd(x,y) 为质数的 (x, y) 有多少对。

思路:

首先,我们根据题意可以得到下面这个式子:

a n s = ∑ x = 1 N ∑ y = 1 M [ gcd ⁡ ( x , y ) = p ] [ p ∈ p r i m e ] ans = \sum\limits_{x=1}^N\sum\limits_{y = 1}^M [\gcd(x,y)=p][p ∈ prime] ans=x=1Ny=1M[gcd(x,y)=p][pprime]

除掉 [gcd(x, y) = p]:

a n s = ∑ x = 1 N / p ∑ y = 1 M / p ∑ p ∈ p r i m e [ g c d ( x , y ) = 1 ] ans = \sum\limits_{x=1}^{N/p}\sum\limits_{y = 1}^{M/p}\sum\limits_{p ∈ prime}[gcd(x, y) = 1] ans=x=1N/py=1M/ppprime[gcd(x,y)=1]

交换求和顺序得:

a n s = ∑ p ∈ p r i m e ∑ x = 1 N / p ∑ y = 1 M / p [ g c d ( x , y ) = 1 ] ans = \sum\limits_{p ∈ prime}\sum\limits_{x=1}^{N/p}\sum\limits_{y = 1}^{M/p}[gcd(x, y) = 1] ans=pprimex=1N/py=1M/p[gcd(x,y)=1]

由于,[gcd(x, y) = 1] 形如 [x = 1],化解得到:

a n s = ∑ p ∈ p r i m e ∑ x = 1 N / p ∑ y = 1 M / p ∑ d ∣ g c d ( x , y ) μ ( d ) ans = \sum\limits_{p ∈ prime}\sum\limits_{x=1}^{N/p}\sum\limits_{y = 1}^{M/p}\sum\limits_{d|gcd(x, y)}μ(d) ans=pprimex=1N/py=1M/pdgcd(x,y)μ(d)

枚举d得到:

a n s = ∑ p ∈ p r i m e ∑ x = 1 N / p ∑ y = 1 M / p ∑ d = 1 m i n ( N , M ) μ ( d ) ans = \sum\limits_{p ∈ prime}\sum\limits_{x=1}^{N/p}\sum\limits_{y = 1}^{M/p}\sum\limits_{d=1}^{min(N, M)}μ(d) ans=pprimex=1N/py=1M/pd=1min(N,M)μ(d)

交换求和顺序:

a n s = ∑ p ∈ p r i m e ∑ d = 1 m i n ( N , M ) ∑ x = 1 N / p ∑ y = 1 M / p μ ( d ) ans = \sum\limits_{p ∈ prime}\sum\limits_{d=1}^{min(N, M)}\sum\limits_{x=1}^{N/p}\sum\limits_{y = 1}^{M/p}μ(d) ans=pprimed=1min(N,M)x=1N/py=1M/pμ(d)

因为d | gcd(x, y),所以d | x 且 d | y, 最后一个求和
∑ d ∣ g c d ( x , y ) \sum\limits_{d|gcd(x, y)} dgcd(x,y)当中的x只与 ∑ x = 1 N / p \sum\limits_{x=1}^{N/p} x=1N/p有关, ∑ d ∣ g c d ( x , y ) \sum\limits_{d|gcd(x, y)} dgcd(x,y)当中的y只与 ∑ y = 1 M / p \sum\limits_{y=1}^{M/p} y=1M/p有关, 例如:

∑ x = 1 a ∑ y = 1 b ∑ d ∣ g c d ( x , y ) = ∑ d = 1 m i n ( a , b ) ⌊ a d ⌋ ∗ ⌊ b d ⌋ . \sum\limits_{x=1}^{a}\sum\limits_{y = 1}^{b}\sum\limits_{d|gcd(x, y)}=\sum\limits_{d=1}^{min(a, b) }⌊\frac{a}{d}⌋*⌊\frac{b}{d}⌋. x=1ay=1bdgcd(x,y)=d=1min(a,b)dadb.

因此原式可化解为:

a n s = ∑ p = 2 , p ∈ p r i m e m i n ( N , M ) / p ∑ d = 1 m i n ( N , M ) / p μ ( d ) ∗ ⌊ N p d ⌋ ∗ ⌊ M p d ⌋ ans = \sum\limits_{p=2,p ∈ prime}^{min(N,M) / p} \sum\limits_{d=1}^{min(N, M)/p}μ(d)*⌊\frac{N}{pd}⌋*⌊\frac{M}{pd}⌋ ans=p=2pprimemin(N,M)/pd=1min(N,M)/pμ(d)pdNpdM

观察形式,当p确定时,后面的式子可以使用整数分块来计算:
∑ d = 1 m i n ( N , M ) / p μ ( d ) ∗ ⌊ N p d ⌋ ∗ ⌊ M p d ⌋ \sum\limits_{d=1}^{min(N, M)/p}μ(d)*⌊\frac{N}{pd}⌋*⌊\frac{M}{pd}⌋ d=1min(N,M)/pμ(d)pdNpdM
令 pd = T, 我们有:

a n s = ∑ p = 2 , p ∈ p r i m e , p ∣ T m i n ( N , M ) ∑ T = 1 m i n ( N , M ) μ ( T p ) ∗ ⌊ N T ⌋ ∗ ⌊ M T ⌋ ans = \sum\limits_{p=2,p ∈ prime,p| T}^{min(N,M)} \sum\limits_{T=1}^{min(N, M)}μ(\frac{T}{p})*⌊\frac{N}{T}⌋*⌊\frac{M}{T}⌋ ans=p=2pprimepTmin(N,M)T=1min(N,M)μ(pT)TNTM

改变求和顺序:

a n s = ∑ p = 2 , p ∈ p r i m e , p ∣ T m i n ( N , M ) ⌊ N T ⌋ ∗ ⌊ M T ⌋ ∑ T = 1 m i n ( N , M ) μ ( T p ) ans = \sum\limits_{p=2,p ∈ prime,p| T}^{min(N,M)} ⌊\frac{N}{T}⌋*⌊\frac{M}{T}⌋\sum\limits_{T=1}^{min(N, M)}μ(\frac{T}{p}) ans=p=2pprimepTmin(N,M)TNTMT=1min(N,M)μ(pT)

我们可以预先处理后半部分的前缀和,再进行分块计算。

代码如下

//Siberian Squirrel
#pragma GCC optimize(2)
#include<bits/stdc++.h>
using namespace std;
//#define ACM_LOCAL
typedef long long ll;
#define printd(x) printf("%d\n", x)
#define printlld(x) printf("%lld\n", x)
#define printlf(x) printf("%.3f\n", x)
#define rep(i, l, r) for(int i = l, i##end = r; i <= i##end; ++i)
#define per(i, l, r) for(int i = l, i##end = r; i >= i##end; --i)
const int inf = 0x3f3f3f3f, MAXN = 1e7 + 10, MOD = 1000000007;
const double PI = acos(-1);
inline int read() {
    int res = 0;
    char c = getchar();
    while (!isdigit(c)) c = getchar();
    while (isdigit(c)) res = (res << 1) + (res << 3) + (c ^ 48), c = getchar();
    return res;
}
inline int ADD(int a, int b) {
    return (1ll * a + b) % MOD;
}
inline int MUL(int a, int b) {
    return 1ll * a * b % MOD;
}
inline int SUB(int a, int b) {
    return (a - b) < 0? (a - b + MOD) % MOD: a - b;
}
//
int a, b, d;
int prime[MAXN], mu[MAXN], cnt = 0, qianzhui[MAXN], g[MAXN];
bool vis[MAXN];
//
inline void pre(int n) {
    mu[1] = 1;
    for(int i = 2; i <= n; ++i) {
        if(!vis[i]) prime[++cnt] = i, mu[i] = -1;
        for(int j = 1; j <= cnt && i * prime[j] <= n; ++j) {
            vis[i * prime[j]] = true;
            if(i % prime[j] == 0) {
                mu[i * prime[j]] = 0;
                break;
            } else mu[i * prime[j]] = -mu[i];
        }
    }
    qianzhui[0] = 0;
    for(int i = 1; i <= cnt; ++i) {
        for(int j = 1; j * prime[i] <= n; ++j) {
            g[j * prime[i]] += mu[j];
        }
    }
    for(int i = 1; i <= n; ++i) qianzhui[i] = qianzhui[i - 1] + g[i];
}
void solve(ll res = 0) {
    pre(MAXN - 2);
    int T = read();
    while(T--) {
        res = 0;
        a = read(), b = read();
        if(a < b) swap(a, b);
        for(int i = 1, j; i <= b; i = j + 1) {
            j = min(a / (a / i), b / (b / i));
            res += (qianzhui[j] - qianzhui[i - 1]) * 1ll * (a / i) * (b / i);
        }
        printlld(res);
    }
}
int main() {
#ifdef ACM_LOCAL
    signed test_index_for_debug = 1;
	char acm_local_for_debug = 0;
	do {
		if (acm_local_for_debug == '$') exit(0);
		if (test_index_for_debug > 20)
			throw runtime_error("Check the stdin!!!");
		double start_clock_for_debug = clock();
		solve();
		double end_clock_for_debug = clock();
		cout << "Test " << test_index_for_debug << " successful" << endl;
		cerr << "Test " << test_index_for_debug++ << " Run Time: "
		     << double(end_clock_for_debug - start_clock_for_debug) / CLOCKS_PER_SEC << "s" << endl;
		cout << "--------------------------------------------------" << endl;
	} while (cin >> acm_local_for_debug && cin.putback(acm_local_for_debug));
#else
    solve();
#endif
    return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值