概率论复习用 更新中


默 认 此 事 发 生 概 率 为 p , 数 学 期 望 E ( X ) , 方 差 D ( X ) 默认此事发生概率为p,数学期望E(X),方差D(X) pE(X)D(X)

样 本 方 差 S 2 , 样 本 标 准 差 S 样本方差 S^2,样本标准差 S S2S

常见分布

0-1分布

P ( X = k ) = p k ( 1 − p ) 1 − k , ( k = 0 , 1 ) P(X = k) = p^k(1 - p)^{1-k},(k=0,1) P(X=k)=pk(1p)1k,(k=0,1)

E ( X ) = p E(X) = p E(X)=p

D ( X ) = p ( 1 − p ) D(X) = p(1-p) D(X)=p(1p)

几何分布 ( X X X ~ G E ( p ) GE(p) GE(p))

第 k 次 发 生 此 事 第k次发生此事 k

P ( X = k ) = ( 1 − p ) k − 1 p P(X = k) = (1-p)^{k-1}p P(X=k)=(1p)k1p

E ( X ) = 1 p E(X)=\frac1p E(X)=p1

D ( X ) = 1 − p p 2 D(X)=\frac{1-p}{p^2} D(X)=p21p

二项分布 ( X X X ~ B ( n , p ) B(n, p) B(n,p))

n 次 试 验 k 次 发 生 此 事 n次试验k次发生此事 nk

P ( X = k ) = C n k p k ( 1 − p ) n − k P(X = k) = C_n^k p^k(1-p)^{n-k} P(X=k)=Cnkpk(1p)nk

E ( X ) = n p E(X) = np E(X)=np

D ( X ) = n p ( 1 − p ) D(X) = np(1-p) D(X)=np(1p)

当 n > = 20 且 p < = 0.05 时 可 看 作 泊 松 分 布 当n>=20且p<=0.05时可看作泊松分布 n>=20p<=0.05

泊松分布 ( X X X ~ P ( λ ) P(\lambda) P(λ))

P ( X = k ) = λ k e − λ k ! , k = 0 , 1 , . . . P(X = k) = \frac{\lambda^ke^{-\lambda}}{k!},k=0,1,... P(X=k)=k!λkeλ,k=0,1,...

E ( X ) = λ E(X)=\lambda E(X)=λ

D ( X ) = λ D(X)=\lambda D(X)=λ

均匀分布 ( X X X ~ U [ a , b ] U[a,b] U[a,b])

f ( x ) = { 1 b − a , a≤x≤b, 0 , otherwise. f(x)= \begin{cases} \frac{1}{b-a},& \text{a≤x≤b,}\\ 0,& \text{otherwise.} \end{cases} f(x)={ba1,0,a≤x≤b,otherwise.

E ( X ) = a + b 2 E(X)=\frac{a+b}2 E(X)=2a+b

D ( X ) = ( b − a ) 2 12 D(X)=\frac{(b-a)^2}{12} D(X)=12(ba)2

指数分布 ( X X X ~ E ( λ ) E(\lambda) E(λ))

f ( x ) = { λ e − λ x , x>0, 0 , otherwise. f(x)= \begin{cases} \lambda e^{-\lambda x},& \text{x>0,}\\ 0,& \text{otherwise.} \end{cases} f(x)={λeλx,0,x0,otherwise.

E ( X ) = 1 λ E(X)=\frac1\lambda E(X)=λ1

D ( X ) = 1 λ 2 D(X)=\frac1{\lambda^2} D(X)=λ21

正态分布 ( X X X ~ N ( μ , σ 2 ) N(\mu,\sigma^2) N(μ,σ2))

ϕ ( x ) = 1 2 π σ e − ( x − μ ) 2 2 σ 2 , x = μ 为 对 称 轴 \phi (x)= \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}},x=\mu 为对称轴 ϕ(x)=2π σ1e2σ2(xμ)2,x=μ

ϕ 0 ( x ) = ϕ 0 ( − x ) \phi_0 (x)=\phi_0 (-x) ϕ0(x)=ϕ0(x)

Φ 0 ( x ) = 1 − Φ 0 ( − x ) \Phi_0 (x)=1-\Phi_0 (-x) Φ0(x)=1Φ0(x)

( 1 )   X ‾ (1)~\overline{X} (1) X ~ N ( μ , σ 2 n ) N(\mu,\frac{\sigma^2}n) N(μ,nσ2)

( 2 )   ( n − 1 ) S 2 σ 2 (2)~\frac{(n-1)S^2}{\sigma^2} (2) σ2(n1)S2 ~ χ 2 ( n − 1 ) \chi^2(n-1) χ2(n1)

( 3 )   X ‾ − μ S / n (3)~\frac{\overline{X}-\mu}{S/\sqrt{n}} (3) S/n Xμ ~ t ( n − 1 ) t(n-1) t(n1)

( 4 )   S 2 n ( X ‾ − μ ) 2 (4)~\frac{S^2}{n(\overline{X}-\mu)^2} (4) n(Xμ)2S2 ~ F ( n − 1 , 1 ) F(n-1,1) F(n1,1)

两 样 本 ( X 1 , . . . , X n 1 ) 和 ( Y 1 , . . . , Y n 2 ) , 分 别 来 自 N ( μ 1 , σ 1 2 ) 和 N ( μ 2 , σ 2 2 ) 并 且 相 互 独 立 有 : 两样本(X_1,...,X_{n_1})和(Y_1,...,Y_{n_2}),分别来自N(\mu_1,\sigma_1^2)和N(\mu_2,\sigma_2^2)并且相互独立有: (X1,...,Xn1)(Y1,...,Yn2),N(μ1,σ12)N(μ2,σ22)

F = S 1 2 / σ 1 2 S 2 2 / σ 2 2 F=\frac{S_1^2/\sigma_1^2}{S_2^2/\sigma_2^2} F=S22/σ22S12/σ12 ~ F ( n 1 − 1 , n 2 − 1 ) F(n_1-1,n_2-1) F(n11,n21)

[ ( X ‾ − Y ‾ ) − ( μ 1 − μ 2 ) ] σ 1 2 n 1 + σ 2 2 n 2 \frac{[(\overline{X}-\overline{Y})-(\mu_1-\mu_2)]}{\sqrt{\frac{\sigma_1^2}{n_1}+\frac{\sigma_2^2}{n_2}}} n1σ12+n2σ22 [(XY)(μ1μ2)] ~ N ( 0 , 1 ) N(0,1) N(0,1)

当 σ 1 2 = σ 2 2 = σ 2 时 当\sigma_1^2=\sigma_2^2=\sigma^2时 σ12=σ22=σ2

[ ( X ‾ − Y ‾ ) − ( μ 1 − μ 2 ) ] S w 1 n 1 + 1 n 2 \frac{[(\overline{X}-\overline{Y})-(\mu_1-\mu_2)]}{S_w\sqrt{\frac{1}{n_1}+\frac{1}{n_2}}} Swn11+n21 [(XY)(μ1μ2)] ~ t ( n 1 + n 2 − 2 ) t(n_1+n_2-2) t(n1+n22)

S w 2 = ( n 1 − 1 ) S 1 2 + ( n 2 − 1 ) S 2 2 n 1 + n 2 − 2 S_w^2=\frac{(n_1-1)S_1^2+(n_2-1)S_2^2}{n_1+n_2-2} Sw2=n1+n22(n11)S12+(n21)S22

E ( X ) = μ E(X)=\mu E(X)=μ

D ( X ) = σ 2 D(X)=\sigma^2 D(X)=σ2

标准正态分布 ( X X X ~ N ( 0 , 1 ) N(0,1) N(0,1))

普 通 正 态 分 布 化 标 准 正 态 分 布 : x − μ σ 普通正态分布化标准正态分布: \frac{x-\mu}{\sigma} σxμ ~ N ( 0 , 1 ) N(0,1) N(0,1)
f ( x ) = 1 2 π e − x 2 2 , x = 0 为 对 称 轴 f(x)= \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}},x=0 为对称轴 f(x)=2π 1e2x2,x=0

Φ ( x ) = Φ 0 ( x − μ σ ) \Phi (x)=\Phi_0 (\frac{x-\mu}{\sigma}) Φ(x)=Φ0(σxμ)

E ( X ) = 0 E(X)=0 E(X)=0

D ( X ) = 1 D(X)=1 D(X)=1

χ 2 \chi^2 χ2 分布( χ 2 \chi^2 χ2 ~ χ 2 ( n ) \chi^2(n) χ2(n)) 服从 N ( 0 , 1 ) N(0,1) N(0,1)分布

χ 2 = ∑ i = 1 n X i 2 \chi^2=\sum\limits_{i=1}^{n}X_i^2 χ2=i=1nXi2

若 X i 若X_i Xi ~ χ 2 ( n i ) ( i = 1 , 2 ) 且 X 1 与 X 2 相 互 独 立 则 \chi^2(n_i)(i=1,2)且X_1与X_2相互独立则 χ2(ni)(i=1,2)X1X2

X 1 + X 2 X_1+X_2 X1+X2 ~ χ 2 ( n 1 + n 2 ) \chi^2(n_1+n_2) χ2(n1+n2)

给 定 α ∈ ( 0 , 1 ) , 满 足 给定\alpha ∈(0,1),满足 α(0,1), P P P{ χ 2 > χ α 2 ( n ) \chi^2>\chi^2_\alpha(n) χ2>χα2(n)} = α   的 点 χ α 2 ( n ) 为 χ 2 ( n ) 分 布 的 上 α 分 位 数 =\alpha~的点\chi^2_\alpha(n)为\chi^2(n)分布的上\alpha分位数 =α χα2(n)χ2(n)α

E ( χ 2 ) = n E(\chi^2)=n E(χ2)=n

D ( χ 2 ) = 2 n D(\chi^2)=2n D(χ2)=2n

t t t 分布( T T T ~ t ( n ) t(n) t(n))

X X X ~ N ( 0 , 1 ) N(0,1) N(0,1), Y Y Y ~ χ 2 ( n ) \chi^2(n) χ2(n), X , Y 相 互 独 立 X,Y相互独立 X,Y

T = X Y / n T=\frac{X}{\sqrt{Y/n}} T=Y/n X ~ t ( n ) t(n) t(n)

P P P{ T > t α ( n ) T>t_\alpha(n) T>tα(n)} = α =\alpha =α

P P P{ ∣ T ∣ > t α 2 ( n ) |T|>t_\frac{\alpha}2(n) T>t2α(n)} = α =\alpha =α

F F F 分布( F F F ~ F ( n 1 , n 2 ) F(n_1,n_2) F(n1,n2))

若 X i 若X_i Xi ~ χ 2 ( n i ) ( i = 1 , 2 ) 且 X 1 与 X 2 相 互 独 立 则 \chi^2(n_i)(i=1,2)且X_1与X_2相互独立则 χ2(ni)(i=1,2)X1X2

F = X 1 / n 1 X 2 / n 2 F=\frac{X_1/n_1}{X_2/n_2} F=X2/n2X1/n1 ~ F ( n 1 , n 2 ) F(n_1,n_2) F(n1,n2)

T 2 T^2 T2 ~ F ( 1 , n ) , T F(1,n),T F(1,n),T ~ t ( n ) t(n) t(n)

P P P{ F > F α ( n 1 , n 2 ) F>F_\alpha(n_1,n_2) F>Fα(n1,n2)} = α =\alpha =α

F 1 − α ( n 1 , n 2 ) = 1 F α ( n 2 , n 1 ) F_{1-\alpha}(n_1,n_2)=\frac1{F_{\alpha}(n_2,n_1)} F1α(n1,n2)=Fα(n2,n1)1

估计

矩估计与极大似然估计

μ ^ k = A k = 1 n ∑ i = 1 n X i k , 样 本   k   阶 ( 原 点 ) 矩 , E ( X ) 为 样 本 一 阶 原 点 矩 . \hat\mu_k= A_k=\frac1n\sum\limits_{i=1}^{n}X_i^k,样本~k~阶(原点)矩,E(X)为样本一阶原点矩. μ^k=Ak=n1i=1nXik k E(X).

v ^ k = B k = 1 n ∑ i = 1 n ( X i − X ‾ ) k , 样 本   k   阶 ( 中 心 ) 矩 , D ( X ) 为 样 本 二 阶 中 心 矩 . \hat v_k= B_k=\frac1n\sum\limits_{i=1}^{n}{(X_i-\overline X)}^k,样本~k~阶(中心)矩,D(X)为样本二阶中心矩. v^k=Bk=n1i=1n(XiX)k k D(X).

似 然 函 数 : L ( ξ ) = ∏ i = 1 n f ( x i ; ξ ) , 求 L m a x ( ξ ^ ) , ξ ^ 即 为 极 大 似 然 估 计 . 似然函数:L(\xi)=\prod\limits_{i=1}^{n}f(x_i;\xi),求L_{max}(\hat\xi),\hat\xi即为极大似然估计. L(ξ)=i=1nf(xi;ξ)Lmax(ξ^)ξ^.

估计量的评价

估计准则

无偏性准则

设 总 体 X 有 未 知 数 θ , X 1 , . . . , X n 是 总 体 X 的 简 单 随 机 样 本 , 若 参 数 θ 的 估 计 量 θ ^ = θ ^ ( X 1 , X 2 , . . . , X n ) , 满 足 设总体X有未知数\theta,X_1, ... ,X_n是总体X的简单随机样本,若参数\theta的估计量\hat\theta=\hat\theta(X_1,X_2,...,X_n),满足 XθX1,...,XnXθθ^=θ^(X1,X2,...,Xn)

E ( θ ^ ) = θ E(\hat\theta)=\theta E(θ^)=θ

则 称 θ ^ 是 θ 的 无 偏 估 计 量 则称\hat\theta是\theta的无偏估计量 θ^θ

若 若 lim ⁡ n − > ∞ E ( θ ^ ) = θ \lim_{n->∞}E(\hat\theta)=\theta n>limE(θ^)=θ

则 称 θ ^ 是 θ 的 渐 进 无 偏 估 计 量 则称\hat\theta是\theta的渐进无偏估计量 θ^θ

有效性准则

设 总 体 X 有 未 知 数 θ , X 1 , . . . , X n 是 总 体 X 的 简 单 随 机 样 本 , 设 θ ^ 1 , θ ^ 2 是 θ 的 两 个 无 偏 估 计 设总体X有未知数\theta,X_1, ... ,X_n是总体X的简单随机样本,设\hat\theta_1,\hat\theta_2是\theta的两个无偏估计 XθX1,...,XnXθ^1,θ^2θ

如 果 如果 D ( θ ^ 1 ) ≤ D ( θ ^ 2 ) , 对 于 一 切 θ ∈ Θ 成 立 , D(\hat\theta_1)≤D(\hat\theta_2),对于一切\theta∈\Theta成立, D(θ^1)D(θ^2)θΘ

且 不 等 号 至 少 对 某 一 θ ∈ Θ 成 立 , 则 称 θ ^ 1 比 θ ^ 2 有 效 且不等号至少对某一\theta∈\Theta成立,则称\hat\theta_1比\hat\theta_2有效 θΘθ^1θ^2

均方误差准则

设 总 体 X 有 未 知 数 θ , X 1 , . . . , X n 是 总 体 X 的 简 单 随 机 样 本 , 设 θ ^ 是 参 数 θ 的 点 估 计 , 方 差 存 在 , 则 称 M s e ( θ ^ ) = E ( θ ^ − θ ) 2 是 θ 的 均 方 误 差 设总体X有未知数\theta,X_1, ... ,X_n是总体X的简单随机样本,设\hat\theta是参数\theta的点估计,方差存在,则称Mse(\hat\theta)=E(\hat\theta-\theta)^2是\theta的均方误差 XθX1,...,XnXθ^θMse(θ^)=E(θ^θ)2θ

设 θ ^ 1 , θ ^ 2 是 θ 的 点 估 计 , 如 果 设\hat\theta_1,\hat\theta_2是\theta的点估计,如果 θ^1,θ^2θ M s e ( θ ^ 1 ) ≤ M s e ( θ ^ 2 ) , 对 于 一 切 θ ∈ Θ 成 立 , Mse(\hat\theta_1)≤Mse(\hat\theta_2),对于一切\theta∈\Theta成立, Mse(θ^1)Mse(θ^2)θΘ

且 不 等 号 至 少 对 某 一 θ ∈ Θ 成 立 , 则 称 θ ^ 1 优 于 θ ^ 2 且不等号至少对某一\theta∈\Theta成立,则称\hat\theta_1优于\hat\theta_2 θΘθ^1θ^2

相合性准则

设 总 体 X 有 未 知 数 θ , X 1 , . . . , X n 是 总 体 X 的 简 单 随 机 样 本 , 设 θ ^ 是 θ 的 点 估 计 , 若 对 于 任 意 θ ∈ Θ 设总体X有未知数\theta,X_1, ... ,X_n是总体X的简单随机样本,设\hat\theta是\theta的点估计,若对于任意\theta∈\Theta XθX1,...,XnXθ^θθΘ

θ ^ n − p − > θ , 当 n − > + ∞ 时 \hat\theta_n-^p->\theta,当n->+∞时 θ^np>θn>+

则 称 θ ^ n 为 θ 的 相 合 估 计 量 或 一 致 估 计 量 则称\hat\theta_n为\theta的相合估计量或一致估计量 θ^nθ

区间估计

暂无

假设检验

小 概 率 反 证 法 思 想 , 一 般 取 α = 0.01 , 0.05 小概率反证法思想,一般取\alpha=0.01,0.05 α=0.010.05

原 假 设 ( 零 假 设 ) H 0 , 备 择 假 设 ( 对 立 假 设 ) H 1 原假设(零假设)H_0,备择假设(对立假设)H_1 ()H0,()H1

基 本 原 则 : 1. 保 护 原 假 设 , 2. 原 假 设 设 为 维 持 现 状 , 原 假 设 取 简 单 假 设 基本原则:1.保护原假设,2.原假设设为维持现状,原假设取简单假设 1.2.

单正态总体

均值假设问题

X i 是 来 总 体 N ( μ , σ 2 ) 样 本 , x i 是 X i 的 样 本 观 测 值 , 显 著 水 平 为 α X_i是来总体N(\mu,\sigma^2)样本,x_i是X_i的样本观测值,显著水平为\alpha XiN(μ,σ2)xiXiα

H 0 : μ = μ 0 H_0:\mu=\mu_0 H0μ=μ0

H 1 : μ ≠ μ 0 H_1:\mu≠\mu_0 H1μ=μ0

σ 已 知 : 用 Z 检 验 , Z = X ‾ − μ 0 σ / n , \sigma已知:用Z检验,Z=\frac{\overline X-\mu_0}{\sigma/\sqrt n}, σZZ=σ/n Xμ0

σ 未 知 : 用 t 检 验 , t = X ‾ − μ 0 S / n \sigma未知:用t检验,t=\frac{\overline X-\mu_0}{S/\sqrt n} σtt=S/n Xμ0

通 过 z 0 或 者 t 0 来 计 算 检 验 统 计 量 的 值 , 通过z_0或者t_0来计算检验统计量的值, z0t0

双 边 检 验 : 双边检验:

1. 利 用 显 著 性 水 平 进 行 检 验 : 1.利用显著性水平进行检验: 1.

W = W= W={ ∣ Z ∣ ≥ z α / 2 |Z|≥z_{\alpha/2} Zzα/2} 或 者 , W = 或者,W= W={ ∣ t ∣ ≥ t α / 2 ( n − 1 ) |t|≥t_{\alpha/2}(n-1) ttα/2(n1)}

2. 利 用 P ′ 值 进 行 假 设 检 验 2.利用P'值进行假设检验 2.P

P ′ = P H 0 P'=P_{H_0} P=PH0{ ∣ Z ∣ ≥ ∣ z 0 ∣ |Z|≥|z_0| Zz0} = 2 [ 1 − ϕ ( ∣ z 0 ∣ ) ] =2[1-\phi(|z_0|)] =2[1ϕ(z0)] 或 者 , P ′ = P H 0 或者,P'=P_{H_0} P=PH0{ ∣ t ∣ ≥ ∣ t 0 ∣ |t|≥|t_0| tt0} = 2 P =2P =2P{ t ( n − 1 ) ≥ ∣ t 0 ∣ t(n-1)≥|t_0| t(n1)t0}

当 P ′ ≤ α 时 , 拒 绝 原 假 设 , 当 P ′ > α 时 , 不 拒 绝 原 假 设 当P'≤\alpha时,拒绝原假设,当P'>\alpha时,不拒绝原假设 PαPα

方差假设问题

H 0 : σ 2 = σ 0 2 H_0:\sigma^2=\sigma^2_0 H0σ2=σ02

H 1 : σ 2 ≠ σ 0 2 H_1:\sigma^2≠\sigma^2_0 H1σ2=σ02

检 验 统 计 量 χ 2 = ( n − 1 ) S 2 σ 0 2 , χ 0 2 = ( n − 1 ) s 2 σ 0 2 检验统计量\chi^2=\frac{(n-1)S^2}{\sigma^2_0},\chi^2_0=\frac{(n-1)s^2}{\sigma^2_0} χ2=σ02(n1)S2χ02=σ02(n1)s2

双 边 检 验 : 双边检验:

1. 利 用 显 著 性 水 平 进 行 检 验 : 1.利用显著性水平进行检验: 1.

W = W= W={ ( n − 1 ) S 2 σ 0 2 ≤ χ 1 − α / 2 2 ( n − 1 )   或   ( n − 1 ) S 2 σ 0 2 ≥ χ α / 2 2 ( n − 1 ) \frac{(n-1)S^2}{\sigma^2_0}≤\chi^2_{1-\alpha/2}(n-1)~或~\frac{(n-1)S^2}{\sigma^2_0}≥\chi^2_{\alpha/2}(n-1) σ02(n1)S2χ1α/22(n1)  σ02(n1)S2χα/22(n1)}

2. 利 用 P ′ 值 进 行 假 设 检 验 2.利用P'值进行假设检验 2.P

P ’ = 2 m i n P’=2min P=2min{ P [ χ 2 ( n − 1 ) ≤ χ 0 2 ] , P [ χ 2 ( n − 1 ) ≥ χ 0 2 ] P[\chi^2(n-1)≤\chi^2_0],P[\chi^2(n-1)≥\chi^2_0] P[χ2(n1)χ02]P[χ2(n1)χ02]}

当 P ′ ≤ α 时 , 拒 绝 原 假 设 , 当 P ′ > α 时 , 不 拒 绝 原 假 设 当P'≤\alpha时,拒绝原假设,当P'>\alpha时,不拒绝原假设 PαPα

假设检验与区间估计

设 θ 的 置 信 度 为 1 − α 的 双 侧 置 信 区 间 为 ( θ ^ L , θ ^ R ) , 则 假 设 设\theta的置信度为1-\alpha的双侧置信区间为(\hat\theta_L,\hat\theta_R),则假设 θ1α(θ^Lθ^R)

H 0 : θ = θ 0 H_0:\theta=\theta_0 H0θ=θ0

H 1 : θ ≠ θ 0 H_1:\theta≠\theta_0 H1θ=θ0

W = ( θ 0 ≤ θ ^ L 或 θ 0 ≥ θ ^ R ) W=(\theta_0≤\hat\theta_L或\theta_0≥\hat\theta_R) W=(θ0θ^Lθ0θ^R)

双正态总体

X i 是 来 自 N ( μ 1 , σ 1 2 ) 的 样 本 X_i是来自N(\mu_1,\sigma^2_1)的样本 XiN(μ1,σ12)

Y i 是 来 自 N ( μ 2 , σ 2 2 ) 的 样 本 Y_i是来自N(\mu_2,\sigma^2_2)的样本 YiN(μ2,σ22)

两 样 本 相 互 独 立 两样本相互独立

均值检验假设

H 0 : μ 1 = μ 2 H_0:\mu_1=\mu_2 H0μ1=μ2

H 1 : μ 1 ≠ μ 2 H_1:\mu_1≠\mu_2 H1μ1=μ2

1.   σ 1 2 和 σ 2 2 已 知 : 用 Z 检 验 , Z = X ‾ − Y ‾ σ 1 2 n 1 + σ 2 2 n 2 , 其 中 z 0 = x ‾ − y ‾ σ 1 2 n 1 + σ 2 2 n 2 1.~\sigma^2_1和\sigma^2_2已知:用Z检验,Z=\frac{\overline X-\overline Y}{\sqrt{\frac{\sigma^2_1}{n_1}+\frac{\sigma^2_2}{n_2}}},其中z_0=\frac{\overline x-\overline y}{\sqrt{\frac{\sigma^2_1}{n_1}+\frac{\sigma^2_2}{n_2}}} 1. σ12σ22ZZ=n1σ12+n2σ22 XYz0=n1σ12+n2σ22 xy

拒 绝 域 : 拒绝域: { ∣ Z ∣ ≥ z α / 2 |Z|≥z_{\alpha/2} Zzα/2}

P ′ = P H 0 P'=P_{H_0} P=PH0{ ∣ Z ∣ ≥ ∣ z 0 ∣ |Z|≥|z_0| Zz0} = 2 [ 1 − Φ ( ∣ z 0 ∣ ) ] =2[1-\Phi(|z_0|)] =2[1Φ(z0)]

2.   σ 1 2 = σ 2 2 且 未 知 : 用 t 检 验 , t = X ‾ − Y ‾ S w 1 n 1 + 1 n 2 , 其 中 S w 2 = ( n 1 − 1 ) S 1 2 + ( n 2 − 1 ) S 2 2 n 1 + n 2 − 2 2.~\sigma^2_1=\sigma^2_2且未知:用t检验,t=\frac{\overline X-\overline Y}{S_w\sqrt{\frac{1}{n_1}+\frac{1}{n_2}}},其中S^2_w=\frac{(n_1-1)S^2_1+(n_2-1)S^2_2}{n_1+n_2-2} 2. σ12=σ22tt=Swn11+n21 XYSw2=n1+n22(n11)S12+(n21)S22

检 验 拒 绝 域 为 : ∣ t ∣ ≥ t α / 2 ( n 1 + n 2 − 2 ) , 其 中 t 0 = x ‾ − y ‾ S w 1 n 1 + 1 n 2 检验拒绝域为:|t|≥t_{\alpha/2}(n_1+n_2-2),其中t_0=\frac{\overline x-\overline y}{S_w\sqrt{\frac{1}{n_1}+\frac{1}{n_2}}} ttα/2(n1+n22)t0=Swn11+n21 xy

P ′ = P H 0 P'=P_{H_0} P=PH0{ ∣ t ∣ ≥ ∣ t 0 ∣ |t|≥|t_0| tt0}= 2 P 2P 2P{ t ( n 1 + n 2 − 2 ) ≥ ∣ t 0 ∣ t(n_1+n_2-2)≥|t_0| t(n1+n22)t0}.

3.   σ 1 2 ≠ σ 2 2 且 未 知 : t = X ‾ − Y ‾ S 1 2 n 1 + S 2 2 n 2 , 其 中 t 0 = x ‾ − y ‾ S 1 2 n 1 + S 2 2 n 2 3.~\sigma^2_1≠\sigma^2_2且未知:t=\frac{\overline X-\overline Y}{\sqrt{\frac{S^2_1}{n_1}+\frac{S^2_2}{n_2}}},其中t_0=\frac{\overline x-\overline y}{\sqrt{\frac{S^2_1}{n_1}+\frac{S^2_2}{n_2}}} 3. σ12=σ22t=n1S12+n2S22 XYt0=n1S12+n2S22 xy

当 两 个 样 本 都 很 大 时 , t 当两个样本都很大时,t t ~ N ( 0 , 1 ) N(0,1) N(0,1)

拒 绝 域 : 拒绝域: { ∣ t ∣ ≥ z α / 2 |t|≥z_{\alpha/2} tzα/2}

P ′ = P H 0 P'=P_{H_0} P=PH0{ ∣ t ∣ ≥ ∣ t 0 ∣ |t|≥|t_0| tt0}= 2 P 2P 2P{ Z ≥ ∣ t 0 ∣ Z≥|t_0| Zt0}.

方差检验假设

H 0 : σ 2 = σ 0 2 H_0:\sigma^2=\sigma^2_0 H0σ2=σ02

H 1 : σ 2 ≠ σ 0 2 H_1:\sigma^2≠\sigma^2_0 H1σ2=σ02

检 验 统 计 量 : F = S 1 2 S 2 2 , 其 值 f 0 = s 1 2 s 2 2 检验统计量:F=\frac{S^2_1}{S^2_2},其值f_0=\frac{s^2_1}{s^2_2} F=S22S12f0=s22s12

拒 绝 域 : W = 拒绝域:W= W={ F ≤ F 1 − α / 2 ( n 1 − 1 , n 2 − 1 ) 或 F ≥ F α / 2 ( n 1 − 1 , n 2 − 1 ) F≤F_{1-\alpha/2}(n_1-1,n_2-1)或F≥F_{\alpha/2}(n_1-1,n_2-1) FF1α/2(n11,n21)FFα/2(n11,n21)}

P ′ = 2 m i n P'=2min P=2min{ P ( f ( n 1 − 1 , n 2 − 1 ) ≥ f 0 ) , P ( F ( n 1 − 1 , n 2 − 1 ) ≤ f 0 ) P(f(n_1-1,n_2-1)≥f_0),P(F(n_1-1,n_2-1)≤f_0) P(f(n11,n21)f0),P(F(n11,n21)f0)}

当 P ′ ≤ α 时 , 拒 绝 原 假 设 , 当 P ′ > α 时 , 不 拒 绝 原 假 设 当P'≤\alpha时,拒绝原假设,当P'>\alpha时,不拒绝原假设 PαPα

Tips

1. 设 U 1.设U 1.U ~ N ( 0 , 1 ) , 我 们 有   U 2 N(0, 1),我们有~U^2 N(0,1) U2 ~ χ 2 ( 1 ) . \chi^2(1). χ2(1).

2. P 2.P 2.P{ ∣ X − E ( X ) ∣ ≥ ϵ |X-E(X)|≥\epsilon XE(X)ϵ}   ≤ D ( X ) ϵ 2 ~≤\frac{D(X)}{\epsilon^2}  ϵ2D(X) ,   P ,~P , P{ ∣ X − E ( X ) ∣ < ϵ |X-E(X)|<\epsilon XE(X)<ϵ}   ≥ 1 − D ( X ) ϵ 2 . ~≥1-\frac{D(X)}{\epsilon^2}.  1ϵ2D(X).

3. L ( ξ ) 为 单 调 函 数 则 直 接 求 , 否 则 令 I n   L ( ξ ) d ξ ∣ ξ = ξ ^ = 0. 3.L(\xi)为单调函数则直接求,否则令\frac{In~L(\xi)}{d\xi}|_{\xi=\hat\xi}=0. 3.L(ξ)dξIn L(ξ)ξ=ξ^=0.

  • 3
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值