概率论基础(4)五种重要的分布(二项、泊松、均匀、指数、正态分布)

本文深入探讨了概率论在自然语言处理(NLP)领域的核心作用,详细讲解了二项分布、泊松分布、均匀分布、指数分布及正态分布等五种重要概率分布的特性与应用实例。通过理解这些分布,读者将能更好地掌握NLP中的统计方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

概率论对于学习 NLP 方向的人,重要性不言而喻。于是我打算从概率论基础篇开始复习,也顺便巩固巩固基础。
这是基础篇的第四篇知识点总结

基础:下面前三篇的链接地址:
概率论基础(1)古典和几何概型及事件运算
概率论基础(2)条件概率、全概率公式和贝叶斯公式
概率论基础(3)一维随机变量(离散型和连续型)
基本求导公式:
在这里插入图片描述

1.离散型-二项分布

形式:
在这里插入图片描述
分布律:
在这里插入图片描述
即当 X=k 时,概率为以上公式

下面是几道例题:
在这里插入图片描述
理解:二项分布其实很好理解,主要在于抓住每个量所对应的意义。当直接求的时候如果情况比较复杂,可以考虑求它的逆事件。
在这里插入图片描述
理解:这种形式较为常见,尤其涉及两个具有相互关联的二项分布时。注意灵活运用逆事件。

2.离散型-泊松分布

形式:
在这里插入图片描述
分布律:
在这里插入图片描述
下面是几道例题:
在这里插入图片描述
理解:注意0的阶乘是等于1的。
在这里插入图片描述
理解:这是一个比较常用的结论,可以记忆一下即可。

3.连续型-均匀分布

形式:
在这里插入图片描述
概率密度:
在这里插入图片描述
例题:
在这里插入图片描述
理解:这里用到了上一篇当中的求解步骤,求概率密度,不要忘了基础的求导公式。

4.连续型-指数分布

形式:
在这里插入图片描述
概率密度:
在这里插入图片描述
注意:
在这里插入图片描述
例题:
在这里插入图片描述
理解:这里用到了指数函数的无记忆性的特点。

5.连续型-正态分布(重要分布)

形式:
在这里插入图片描述
概率密度:
在这里插入图片描述
显然,这里需要知道两个量的具体值: σ 和 μ

常用的性质:
在这里插入图片描述
例题:
在这里插入图片描述
理解:这个题目直接根据性质就可以解出。

在这里插入图片描述
理解:由对称性质,可推出结果。
在这里插入图片描述
理解:注意,σ 越小,则曲线越陡

标准正态分布

形式:
在这里插入图片描述
概率密度:
在这里插入图片描述
几个重要性质:
在这里插入图片描述

例题:
在这里插入图片描述
理解:运用性质可拆解为标准正态分布之间的运算,题目中也已经给出结果。
在这里插入图片描述
理解:σ=2, μ=2,运用性质可以发现等于D选项。
在这里插入图片描述
理解:这个题是再一次练习标准正态分布的性质运用。

6.总结

下面是五个重要分布的小节及它们的分布律或概率密度
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值