2021SC@SDUSC
这篇代码来分析models文件夹下的Roberta模型的部分代码
roberta-classification.py这个文件中定义了forward函数
分析: 前向计算组网部分包括loss值的计算,必须由子类实现 :param: fields_dict: 序列化好的id :param: phase: 当前调用的阶段,如训练、预测,不同的阶段组网可以不一样 :return: 一个dict数据,存放TARGET_FEED_NAMES, TARGET_PREDICTS, PREDICT_RESULT,LABEL,LOSS等所有你希望获取的数据
分析:保存模型时需要的入参:表示预测时最终输出的结果
分析:保存模型时需要的入参:表示模型预测时需要输入的变量名称和顺序
分析:按需解析模型预测出来的结果 :param predict_result: 模型预测出来的结果 :return:
分析:指标评估部分的动态计算和打印 :param fetch_output_dict: executor.run过程中fetch出来的forward中定义的tensor :param meta_info:常用的meta信息,如step, used_time, gpu_id等 :param phase: 当前调用的阶段,包含训练和评估 :return:
本篇代码分析到此为止,下篇继续分析