题目链接
计算整数集合{1,2,3,4, … N }满足下列条件的的排列个数:
在位置a1, a2, …, aK小于其邻居(编号从0开始,所以 a1到 ak 的值最小为 0)。
在位置b1, b2, …, bL大于其邻居。
输出符合条件的排列数量Mod 1000000007的结果。例如:N = 4,a = {1}, b = {2},符合条件的排列为:
2 1 4 3
3 2 4 1
4 2 3 1
3 1 4 2
4 1 3 2
输入
第1行:3个数N, K, L,分别表示数组的长度,限制a的长度,限制b的长度(1 <= N <= 5000, 1 <= K, L <= N)。
第2 ~ K+1行:每行一个数,对应限制a的位置(1 <= ai <= N - 2)
第K+2 ~ K+L+1行:每行一个数,对应限制b的位置(1 <= bi <= N - 2)
输出
输出符合条件的排列数量Mod 1000000007的结果。
输入样例
4 1 1
1
2
输出样例
5
考虑没有限制的排列
n | 整理前 | 整理后 |
1 | 1 | 1 |
2 | 1,1 1,2 | 2,1 1,2 |
3 | 2,1,1 2,1,2 2,1,3 1,2,1 1,2,2 1,2,3 | 3,2,1 3,1,2 2,1,3 2,3,1 1,3,2 1,2,3 |
... | ... | ... |
p[i]=1 : a[i] 要小于 a[i−1],dp[i][j]=∑i−1k=jdp[i−1][k]
p[i]=2 : a[i] 要大于 a[i−1],dp[i][j]=∑j−1k=1dp[i−1][k]
#include<bits/stdc++.h>
using namespace std;
const long long mod=1000000007;
int n,k,l;
int dp[5010][5010],state[5010],sum[5010];
int main(){
cin>>n>>k>>l;
int a;
for(int i=0;i<k;i++){
cin>>a;
state[++a]=1;
state[a+1]=2;//7 5 8
}
for(int i=0;i<l;i++){
cin>>a;
state[++a]=2;//3 6 5
state[a+1]=1;
}
sum[0]=0;
dp[1][1]=sum[1]=1;
for(int i=2;i<=n;i++){
for(int j=1;j<=i;j++){
if(state[i]==0) dp[i][j]=sum[i-1];
if(state[i]==1) dp[i][j]=(sum[i-1]-sum[j-1]+mod)%mod;
if(state[i]==2) dp[i][j]=sum[j-1];
}
for(int j=1;j<=i;j++){
sum[j]=(sum[j-1]+dp[i][j])%mod;
}
}
long long answer=0;
for(int i=1;i<=n;i++){
answer=(answer+dp[n][i])%mod;
}
cout<<answer<<endl;
return 0;
}