51nod1296 有限制的排列

10 篇文章 0 订阅

题目链接
计算整数集合{1,2,3,4, … N }满足下列条件的的排列个数:

在位置a1, a2, …, aK小于其邻居(编号从0开始,所以 a1到 ak 的值最小为 0)。

在位置b1, b2, …, bL大于其邻居。

输出符合条件的排列数量Mod 1000000007的结果。例如:N = 4,a = {1}, b = {2},符合条件的排列为:

2 1 4 3

3 2 4 1

4 2 3 1

3 1 4 2

4 1 3 2

输入
第1行:3个数N, K, L,分别表示数组的长度,限制a的长度,限制b的长度(1 <= N <= 5000, 1 <= K, L <= N)。
第2 ~ K+1行:每行一个数,对应限制a的位置(1 <= ai <= N - 2)
第K+2 ~ K+L+1行:每行一个数,对应限制b的位置(1 <= bi <= N - 2)
输出
输出符合条件的排列数量Mod 1000000007的结果。
输入样例
4 1 1
1
2
输出样例
5

考虑没有限制的排列

n整理前整理后
111
21,1     1,22,1    1,2
32,1,1    2,1,2    2,1,3        1,2,1    1,2,2    1,2,33,2,1    3,1,2    2,1,3        2,3,1    1,3,2    1,2,3
.........
p[i]=0 : a[i] 无限制,dp[i][j]=∑i−1k=1dp[i−1][k]
p[i]=1 : a[i] 要小于 a[i−1],dp[i][j]=∑i−1k=jdp[i−1][k]
p[i]=2 : a[i] 要大于 a[i−1],dp[i][j]=∑j−1k=1dp[i−1][k]
#include<bits/stdc++.h>
using namespace std;
const long long mod=1000000007;
int n,k,l;
int dp[5010][5010],state[5010],sum[5010];
int main(){
    cin>>n>>k>>l;
    int a;
    for(int i=0;i<k;i++){
        cin>>a;
        state[++a]=1;
        state[a+1]=2;//7 5 8
    }
    for(int i=0;i<l;i++){
        cin>>a;
        state[++a]=2;//3 6 5
        state[a+1]=1;
    }
    sum[0]=0;
    dp[1][1]=sum[1]=1;
    for(int i=2;i<=n;i++){
        for(int j=1;j<=i;j++){
            if(state[i]==0) dp[i][j]=sum[i-1];
            if(state[i]==1) dp[i][j]=(sum[i-1]-sum[j-1]+mod)%mod;
            if(state[i]==2) dp[i][j]=sum[j-1];
        }
        for(int j=1;j<=i;j++){
            sum[j]=(sum[j-1]+dp[i][j])%mod;
        }
    }
    long long answer=0;
    for(int i=1;i<=n;i++){
        answer=(answer+dp[n][i])%mod;
    }
    cout<<answer<<endl;
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值