自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(22)
  • 收藏
  • 关注

原创 【解决问题】Git无法上传Github远端的一种解决方法

用git无法上传github的一种情况的解决方法

2023-01-14 13:25:14 1070

原创 蓝桥杯单片机·蓝桥杯全国软件和信息技术专业人才大赛电子类单片机 常用代码笔记

蓝桥杯单片机优质笔记

2022-05-22 22:12:09 456

原创 明日外星人·Python网络爬虫从入门到实践笔记chap1&chap2(初识网络爬虫|了解Web前端)

初识网络爬虫 了解web前端

2022-05-22 21:57:19 307

原创 吴恩达·Machine Learning || chap18 Application example photo OCR & chap19 Conclusion简记

18 Application example photo OCR 18-1 Problem description and pipeline The photo OCR problem 1.Text detection 2.Character segmentation 3.Character classification (recognition) 4.*Spelling correction Photo OCR pipeline 18-2 Sliding windows Text detection

2021-09-12 20:03:18 134

原创 吴恩达·Machine Learning || chap17 Large scale machine learning简记

17 Large scale machine learning 17-1 Learning with large datasets Machine learning and data Classify between confusable words. E.g., (to, two, too), (then, than) It’s not who has the best algorithm that wins It’s who has the most data Learning with large

2021-09-12 11:44:17 128

原创 吴恩达·Machine Learning || chap16 Recommender System简记

16 Recommender System 16-1 Problem formulation Example : predicting movie rating User rates movies using one to five stars 16-2 Content-based recommendations content-based recommender systems Problem formulation $r(i,j)=$1 if user j has movie i (0,otherw

2021-09-11 17:20:26 99

原创 吴恩达·Machine Learning || chap15 Anomaly detection简记

15 Anomaly detection 15-1 Problem motivation Anomaly detection example Aircraft engine features: ​ x1x_1x1​=heat generated ​ x2x_2x2​=vibration intensity ​ ⋯\cdots⋯ Dataset: {x(1),x(2),⋯ ,x(m)}\{ x ^ { ( 1 ) } , x ^ { ( 2 ) } , \cdots , x ^ { ( m ) } \}{x(

2021-09-10 18:55:48 171

原创 吴恩达·Machine Learning || chap14 Dimensionality Reduction简记

14-1 Motivation I:Data Compression Data Compression Reduce data from 2D to 1D:project line x1,x2⟶z1x_1,x_2\longrightarrow z_1x1​,x2​⟶z1​ Reduce data from 3D to 2D:project plane x1,x2,x3⟶z1,z2x_1,x_2,x_3\longrightarrow z_1,z_2x1​,x2​,x3​⟶z1​,z2​ 14-2 Motiva

2021-09-09 17:45:49 96

原创 吴恩达·Machine Learning || chap13 Clustering简记

13 Clustering 13-1 Unsupervised learning introduction Supervised learning Training set: {(x(1),y(1)),(x(2),y(2)),(x(3),y(3)),⋯ ,(x(m),y(m))}\{ ( x ^ { ( 1 ) } , y ^ { ( 1 ) } ) , ( x ^ { ( 2 ) } , y ^ { ( 2 ) } ) , ( x ^ { ( 3 ) } , y ^ { ( 3 ) } ) , \cdo

2021-09-08 16:18:06 130

原创 吴恩达·Machine Learning || chap12 Support Vector Machines简记

12-1 Optimization objective Alternative view of logistic regression hθ(x)=11+e−θTxh _ { \theta } ( x ) = \frac { 1 } { 1 + e ^ { - \theta ^ { T } x } }hθ​(x)=1+e−θTx1​ If y=1y=1y=1,we want hθ(x)≈1,θTx≫0h_{\theta}(x)\approx1, \theta^Tx\gg0hθ​(x)≈1,θTx≫0 If

2021-09-06 18:55:43 99

原创 吴恩达·Machine Learning || chap11 Machine learning system design简记

11 Machine learning system design 11-1 Prioritizing what to work on: Spam classification example Building a spam classifier Supervised learning. x=features of email. y=spam(1) or not spam(0). Features x: Choose 100 words indicative of spam/not spam xj={1&

2021-09-04 16:23:17 367

原创 吴恩达·Machine Learning || chap10 Advice for applying machine learning简记

10 Advice for applying machine learning 10-1 Deciding what to try next Debugging a learning algorithm Suppose you have implemented regularized linear regression to predict housing prices. J(θ)=12m[∑i=1m(h0(x(i))−y(i))2+λ∑j=1mθj2]J ( \theta ) = \frac { 1 }

2021-09-03 16:29:22 144

原创 吴恩达·Machine Learning || chap9 Neural Network : Learning简记

9 Neural Network : Learning 9-1 Cost function Neural Network(classification) (x(1),y(1)),(x(2),y(2)),⋯ ,(x(m),y(m))(x^{(1)},y^{(1)}),(x^{(2)},y^{(2)}),\cdots,(x^{(m)},y^{(m)})(x(1),y(1)),(x(2),y(2)),⋯,(x(m),y(m)) LLL = total no. of layers in network sls_ls

2021-08-16 20:46:22 109

原创 吴恩达·Machine Learning || chap8 Neural Networks:Representation 简记

8 Neural Networks: Representation 8-1 Non-linear hypotheses Non-linear Classification 0、1 8-2 Neurons and the brain Neurons Networks ​ Origins: Algorithms that try to mimic the brain. Was very widely used in 80s and early 90s;popularity diminished in late

2021-08-13 17:00:08 136

原创 吴恩达·Machine Learning || chap7 Regularizationn 简记

7 Regularization 7-1 The problem of overfitting underfitting——high bias Just right overfitting——high variance 高方差 Overfitting: If we have too many features, the learned hypothesis may fit the training set very well, but fail to generalize to new examples A

2021-08-11 21:34:57 131

原创 极客时间·3小时Python 数据分析和可视化 学习笔记

以对豆瓣《赛博朋克2077》的评分和评论进行数据分析的举例

2021-08-09 22:27:57 326

原创 吴恩达·Machine Learning || chap5&6 Octave Tutorial&Logistic Regression 简记

5 Octave Tutorial (Octave也可以用MATLAB学习,个人决定使用Python进行学习实现,5-6建议无论学习什么语言都可以看一看) 5-1 Basic operations 5-2 Moving data around 5-3 Computing on data 5-4 Plotting data 5-5 for,while,if statements,and function 5-6 Vectorization Vectorization example hθ(x)=∑j=0

2021-08-06 18:19:37 112

原创 吴恩达·Machine Learning || chap4 Linear Regression with multiple variables 简记

4 Linear Regression with multiple variables 4-1 Multiple features Multiple features (variables) ​ Notation: ​ nnn​ = number of features ​ x(i)x^{(i)}x(i)​=input(features) of ithi^{th}ith​ training example. ​ xj(i)x_j^{(i)}xj(i)​​=value of feature in ith

2021-07-31 16:21:25 106

原创 吴恩达·Machine Learning || chap3 Linear Algebra review(optional) 简记

3 Linear Algebra review(optional) 3-1 Matrices and Vectors Matrix: Rectangular array of numbers Dimension of matrix: number of rows x number of columns (m x n) Matrix Elements(entries of matrix) Vector: An n x 1 matrix 1-indexed refer A,B,C,X a,b,x,y 3-

2021-07-30 18:06:42 134

原创 吴恩达·Machine Learning || chap2 Linear regression with one variable 简记

2 Linear regression with one variable 2-1 Model representation Training set m = Number of training examples x’s = “input” variable/features y’s = “output” variable/“target” variable (x,y) = one training example Hypothesis 假设函数 hθ(x)=(θ)0+θ1x h_\theta (x)=(

2021-07-28 17:34:16 110

原创 DOS命令最基础的使用

基本的Dos命令 打开cmd的方式 开始+系统+命令提示符 Win键+R 输入cmd打开控制台 在任意的文件夹下,shift+鼠标右键 资源管理器的地址栏前面加上“cmd 路径” 资源管理器的地址栏前面加上cmd路径 以管理员身份运行 常见的DOS命令 盘符切换 D: 查看当前目录下的所有文件 dir 切换目录 cd 目录具体路径/该目录下文件名 ​ cd /d ​ **cd…**返回上一级 ​ md 创建文件夹 ​ **cd>**进入文件 ​ del 删除文件

2021-07-27 11:32:24 100

原创 吴恩达·Machine Learning || chap1 Introduction 简记

这里写自定义目录标题欢迎使用Markdown编辑器新的改变功能快捷键合理的创建标题,有助于目录的生成如何改变文本的样式插入链接与图片如何插入一段漂亮的代码片生成一个适合你的列表创建一个表格设定内容居中、居左、居右SmartyPants创建一个自定义列表如何创建一个注脚注释也是必不可少的KaTeX数学公式新的甘特图功能,丰富你的文章UML 图表FLowchart流程图导出与导入导出导入 欢迎使用Markdown编辑器 你好! 这是你第一次使用 Markdown编辑器 所展示的欢迎页。如果你想学习如何使用Mar

2021-07-26 16:40:16 92

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除