- 博客(22)
- 收藏
- 关注
原创 吴恩达·Machine Learning || chap18 Application example photo OCR & chap19 Conclusion简记
18 Application example photo OCR 18-1 Problem description and pipeline The photo OCR problem 1.Text detection 2.Character segmentation 3.Character classification (recognition) 4.*Spelling correction Photo OCR pipeline 18-2 Sliding windows Text detection
2021-09-12 20:03:18 134
原创 吴恩达·Machine Learning || chap17 Large scale machine learning简记
17 Large scale machine learning 17-1 Learning with large datasets Machine learning and data Classify between confusable words. E.g., (to, two, too), (then, than) It’s not who has the best algorithm that wins It’s who has the most data Learning with large
2021-09-12 11:44:17 128
原创 吴恩达·Machine Learning || chap16 Recommender System简记
16 Recommender System 16-1 Problem formulation Example : predicting movie rating User rates movies using one to five stars 16-2 Content-based recommendations content-based recommender systems Problem formulation $r(i,j)=$1 if user j has movie i (0,otherw
2021-09-11 17:20:26 99
原创 吴恩达·Machine Learning || chap15 Anomaly detection简记
15 Anomaly detection 15-1 Problem motivation Anomaly detection example Aircraft engine features: x1x_1x1=heat generated x2x_2x2=vibration intensity ⋯\cdots⋯ Dataset: {x(1),x(2),⋯ ,x(m)}\{ x ^ { ( 1 ) } , x ^ { ( 2 ) } , \cdots , x ^ { ( m ) } \}{x(
2021-09-10 18:55:48 171
原创 吴恩达·Machine Learning || chap14 Dimensionality Reduction简记
14-1 Motivation I:Data Compression Data Compression Reduce data from 2D to 1D:project line x1,x2⟶z1x_1,x_2\longrightarrow z_1x1,x2⟶z1 Reduce data from 3D to 2D:project plane x1,x2,x3⟶z1,z2x_1,x_2,x_3\longrightarrow z_1,z_2x1,x2,x3⟶z1,z2 14-2 Motiva
2021-09-09 17:45:49 96
原创 吴恩达·Machine Learning || chap13 Clustering简记
13 Clustering 13-1 Unsupervised learning introduction Supervised learning Training set: {(x(1),y(1)),(x(2),y(2)),(x(3),y(3)),⋯ ,(x(m),y(m))}\{ ( x ^ { ( 1 ) } , y ^ { ( 1 ) } ) , ( x ^ { ( 2 ) } , y ^ { ( 2 ) } ) , ( x ^ { ( 3 ) } , y ^ { ( 3 ) } ) , \cdo
2021-09-08 16:18:06 130
原创 吴恩达·Machine Learning || chap12 Support Vector Machines简记
12-1 Optimization objective Alternative view of logistic regression hθ(x)=11+e−θTxh _ { \theta } ( x ) = \frac { 1 } { 1 + e ^ { - \theta ^ { T } x } }hθ(x)=1+e−θTx1 If y=1y=1y=1,we want hθ(x)≈1,θTx≫0h_{\theta}(x)\approx1, \theta^Tx\gg0hθ(x)≈1,θTx≫0 If
2021-09-06 18:55:43 99
原创 吴恩达·Machine Learning || chap11 Machine learning system design简记
11 Machine learning system design 11-1 Prioritizing what to work on: Spam classification example Building a spam classifier Supervised learning. x=features of email. y=spam(1) or not spam(0). Features x: Choose 100 words indicative of spam/not spam xj={1&
2021-09-04 16:23:17 367
原创 吴恩达·Machine Learning || chap10 Advice for applying machine learning简记
10 Advice for applying machine learning 10-1 Deciding what to try next Debugging a learning algorithm Suppose you have implemented regularized linear regression to predict housing prices. J(θ)=12m[∑i=1m(h0(x(i))−y(i))2+λ∑j=1mθj2]J ( \theta ) = \frac { 1 }
2021-09-03 16:29:22 144
原创 吴恩达·Machine Learning || chap9 Neural Network : Learning简记
9 Neural Network : Learning 9-1 Cost function Neural Network(classification) (x(1),y(1)),(x(2),y(2)),⋯ ,(x(m),y(m))(x^{(1)},y^{(1)}),(x^{(2)},y^{(2)}),\cdots,(x^{(m)},y^{(m)})(x(1),y(1)),(x(2),y(2)),⋯,(x(m),y(m)) LLL = total no. of layers in network sls_ls
2021-08-16 20:46:22 109
原创 吴恩达·Machine Learning || chap8 Neural Networks:Representation 简记
8 Neural Networks: Representation 8-1 Non-linear hypotheses Non-linear Classification 0、1 8-2 Neurons and the brain Neurons Networks Origins: Algorithms that try to mimic the brain. Was very widely used in 80s and early 90s;popularity diminished in late
2021-08-13 17:00:08 136
原创 吴恩达·Machine Learning || chap7 Regularizationn 简记
7 Regularization 7-1 The problem of overfitting underfitting——high bias Just right overfitting——high variance 高方差 Overfitting: If we have too many features, the learned hypothesis may fit the training set very well, but fail to generalize to new examples A
2021-08-11 21:34:57 131
原创 吴恩达·Machine Learning || chap5&6 Octave Tutorial&Logistic Regression 简记
5 Octave Tutorial (Octave也可以用MATLAB学习,个人决定使用Python进行学习实现,5-6建议无论学习什么语言都可以看一看) 5-1 Basic operations 5-2 Moving data around 5-3 Computing on data 5-4 Plotting data 5-5 for,while,if statements,and function 5-6 Vectorization Vectorization example hθ(x)=∑j=0
2021-08-06 18:19:37 112
原创 吴恩达·Machine Learning || chap4 Linear Regression with multiple variables 简记
4 Linear Regression with multiple variables 4-1 Multiple features Multiple features (variables) Notation: nnn = number of features x(i)x^{(i)}x(i)=input(features) of ithi^{th}ith training example. xj(i)x_j^{(i)}xj(i)=value of feature in ith
2021-07-31 16:21:25 106
原创 吴恩达·Machine Learning || chap3 Linear Algebra review(optional) 简记
3 Linear Algebra review(optional) 3-1 Matrices and Vectors Matrix: Rectangular array of numbers Dimension of matrix: number of rows x number of columns (m x n) Matrix Elements(entries of matrix) Vector: An n x 1 matrix 1-indexed refer A,B,C,X a,b,x,y 3-
2021-07-30 18:06:42 134
原创 吴恩达·Machine Learning || chap2 Linear regression with one variable 简记
2 Linear regression with one variable 2-1 Model representation Training set m = Number of training examples x’s = “input” variable/features y’s = “output” variable/“target” variable (x,y) = one training example Hypothesis 假设函数 hθ(x)=(θ)0+θ1x h_\theta (x)=(
2021-07-28 17:34:16 110
原创 DOS命令最基础的使用
基本的Dos命令 打开cmd的方式 开始+系统+命令提示符 Win键+R 输入cmd打开控制台 在任意的文件夹下,shift+鼠标右键 资源管理器的地址栏前面加上“cmd 路径” 资源管理器的地址栏前面加上cmd路径 以管理员身份运行 常见的DOS命令 盘符切换 D: 查看当前目录下的所有文件 dir 切换目录 cd 目录具体路径/该目录下文件名 cd /d **cd…**返回上一级 md 创建文件夹 **cd>**进入文件 del 删除文件
2021-07-27 11:32:24 100
原创 吴恩达·Machine Learning || chap1 Introduction 简记
这里写自定义目录标题欢迎使用Markdown编辑器新的改变功能快捷键合理的创建标题,有助于目录的生成如何改变文本的样式插入链接与图片如何插入一段漂亮的代码片生成一个适合你的列表创建一个表格设定内容居中、居左、居右SmartyPants创建一个自定义列表如何创建一个注脚注释也是必不可少的KaTeX数学公式新的甘特图功能,丰富你的文章UML 图表FLowchart流程图导出与导入导出导入 欢迎使用Markdown编辑器 你好! 这是你第一次使用 Markdown编辑器 所展示的欢迎页。如果你想学习如何使用Mar
2021-07-26 16:40:16 92
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人