吴恩达·Machine Learning || chap3 Linear Algebra review(optional) 简记

这篇博客介绍了线性代数的基础概念,包括矩阵和向量的定义及其维度,矩阵加法和标量乘法,矩阵与向量的乘法以及矩阵的乘法性质。还提到了预测公式中的应用,如数据预测等于数据减去矩阵乘以参数。此外,讲解了矩阵乘法的不交换性,乘法的结合律,单位矩阵的性质,矩阵的逆和转置,强调了零矩阵没有逆的情况。
摘要由CSDN通过智能技术生成

3 Linear Algebra review(optional)

3-1 Matrices and Vectors

Matrix: Rectangular array of numbers

Dimension of matrix: number of rows x number of columns (m x n)

Matrix Elements(entries of matrix)

Vector: An n x 1 matrix

1-indexed

refer A,B,C,X a,b,x,y

3-2 Addition and scalar multiplication

Matrix Addition

Matrix Scalar Multiplication

Combination of Operands

3-3 Matrix-vector multiplication

【m x n】【n x 1】=【m x 1】

neat trick: prediction = data-matrix x parameters

3-4 Matrix-matrix multiplication

【m x n】【n x o】=【m x o】

neat trick:prediction = data-matrix x parameters-matrix

3-5 Matrix multiplication properties

A × B ≠ B × A A \times B \neq B \times A A×B=B×A

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值