(三)线性判别式分析LDA

目录

一、LDA

二、LDA的推导

1.求样本方差

2.优化LDA

三、PCA和LDA的区别


一、LDA

线性判别式分析,又称Fisher线性判别(Linear discriminant analysis)。

如下图所示:

左图是前面我们学到的PCA(主成分分析),PCA是一种数据压缩算法(降维),它压缩的目的是,使之在后续数据恢复中的损失最小,优化准则是最小重构误差,是无监督学习算法;右图是LDA,LDA是一个监督学习算法,它是有类别的,其次,LDA算法也是一个数据压缩算法,它压缩的目的是可以很好的将样本区分开,优化准则是让每个类之间距离更大,类内更加紧凑(即最大化类间均值,最小化类内方差)。

二、LDA的推导

我们来看一下LDA是怎么推导的:

1.求样本方差

K类样本如下图所示:

我们假设\tilde{x}^j_i为变换后的样本,即映射到主向量上的样本。

\tilde{x}^j_i在主向量上的表示为:

 它们之间的关系如图所示:

 

 因为我们想要最小化类内方差,所以计算第K类的方差:

为样本方差公式,其中\tilde{x}为变换之后的样本,\tilde{m}为变换之后的均值。

那这个公式是怎么得来的呢?

其中间转换公式为:(\tilde{x}-\tilde m)^2=(\tilde{x}-\tilde m)^T(\tilde{x}-\tilde m)

然后将\tilde{x}^j_i代入\tilde{x}

注意,x和u是列向量,u^Tx=x^Tu是一个实数,实数的转置还是实数;我们假设u是一个单位向量,则u^Tu=1,若u的长度定义为a,则在下属公式右边再乘a。。

全部过程如下所示:

要求第K类样本的方差还要除以第K类样本的个数:

其中\frac{\sum x^T}{N_k}=m^T(均值)

 

2.优化LDA

(1)最小化类内方差

对K类样本的方差求和:

 

 最终求得,我们的目的就是使这一项尽可能的小,

(2)最大化类间均值

不同样本之间距离可以表示为:

 对S_{ij}求和得到:

 

 最终求得,我们的目的是使这一项尽可能的大。

总结

我们的最终目的就是,最小化S_w,最大化S_b

我们构建下述公式,求 J 的最大值。

其中求最大值我们应用的拉格朗日乘子。

 

我们使得S_bS_w^{-1}u=T,则该方程变为Tu = λu,该问题就转变为特征值和特征向量的问题,从而得到 u 和 λ 。

附手推图:

 

 

三、PCA和LDA的区别

PCA(主成分分析)是一种数据压缩算法(降维),它压缩的目的是,使之在后续数据恢复中的损失最小,优化准则是最小重构误差,是无监督学习算法;LDA是一个监督学习算法,它是有类别的,其次,LDA算法也是一个数据压缩算法,它压缩的目的是可以很好的将样本区分开,优化准则是让每个类之间距离更大,类内更加紧凑(即最大化类间均值,最小化类内方差)。

主方向个数:

有N类样本,每个样本的维数为n

PCA最多可以找到n个主方向。

LDA最多可以找到N-1个主方向。

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Billie使劲学

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值