【无标题】

形函数构造

构造单元1的一般近似函数 V ( x ) ‾ ( 1 ) \overline{V(x)}^{(1)} V(x)(1),由于该单元只有两个节点 x 1 x_1 x1 x 2 x_2 x2,我们选择包含两个参数 α 1 \alpha_1 α1 α 2 \alpha_2 α2的近似方程
V ( x ) ‾ ( 1 ) = α 1 + α 2 × x \overline{V(x)}^{(1)}=\alpha_1+\alpha_2\times x V(x)(1)=α1+α2×x
令试函数与 V ( x ) V(x) V(x)在节点 x 1 x_1 x1 x 2 x_2 x2处相等,可以得
V ( x 1 ) ‾ ( 1 ) = α 1 + α 2 × x 1 = V 1 V ( x 2 ) ‾ ( 1 ) = α 1 + α 2 × x 2 = V 2 \overline{V(x_1)}^{(1)}=\alpha_1+\alpha_2\times x_1=V_1\\\overline{V(x_2)}^{(1)}=\alpha_1+\alpha_2\times x_2=V_2 V(x1)(1)=α1+α2×x1=V1V(x2)(1)=α1+α2×x2=V2
求解$\alpha_1 $ 和 $\alpha_2 $,可得
{ α 1 α 2 } = 1 x 2 − x 1 × [ x 2 x 1 − 1 1 ] × { V 1 V 2 } \left\{\begin{array}{l} \alpha_{1} \\ \alpha_{2} \end{array}\right\}=\frac{1}{x_{2}-x_{1}} \times\left[\begin{array}{cc} x_{2} & x_{1} \\ -1 & 1 \end{array}\right] \times\left\{\begin{array}{l} V_{1} \\ V_{2} \end{array}\right\} {α1α2}=x2x11×[x21x11]×{V1V2}
α {\alpha} α代入,试函数变成
V ( x ) ‾ ( 1 ) = 1 x 2 − x 1 × [ 1 x ] × [ x 2 x 1 − 1 1 ] × { V 1 V 2 } \overline{V(x)}^{(1)}=\frac{1}{x_2-x_1}\times\begin{bmatrix}1&x\end{bmatrix}\times\begin{bmatrix}x_2&x_1\\-1&1\end{bmatrix}\times\begin{Bmatrix}V_1\\V_2\end{Bmatrix} V(x)(1)=x2x11×[1x]×[x21x11]×{V1V2}
整理可得
V ( x ) ‾ ( 1 ) = [ x 2 − x x 2 − x 1 − x 1 + x x 2 − x 1 ] × { V 1 V 2 } = N 1 ( x ) ( 1 ) × V 1 + N 2 ( x ) ( 1 ) × V 2 \overline{V(x)}^{(1)}=\left[\frac{x_2-x}{x_2-x_1}\quad\frac{-x_1+x}{x_2-x_1}\right]\times\left\{V_1\atop V_2\right\}=N_1(x)^{(1)}\times V_1+N_2(x)^{(1)}\times V_2 V(x)(1)=[x2x1x2xx2x1x1+x]×{V2V1}=N1(x)(1)×V1+N2(x)(1)×V2
其中
N 1 ( x ) ( 1 ) = x 2 − x x 2 − x 1 N 2 ( x ) ( 1 ) = − x 1 + x x 2 − x 1 N_{1}(x)^{(1)}=\frac{x_{2}-x}{x_{2}-x_{1}}\\N_{2}(x)^{(1)}=\frac{-x_{1}+x}{x_{2}-x_{1}} N1(x)(1)=x2x1x2xN2(x)(1)=x2x1x1+x
构造单元2到n-1
∙ 单元 2: V ( x ) ‾ ( 2 ) = N 1 ( x ) ( 2 ) × V 2 + N 2 ( x ) ( 2 ) × V 3 ∙ ⋯ ∙ 单元  n − 1 : V ( x ) ‾ ( n − 1 ) = N 1 ( x ) ( n − 1 ) × V n − 1 + N 2 ( x ) ( n − 1 ) × V n \begin{aligned}&\bullet\quad\text{单元 2:}\quad\overline{V(x)}^{(2)}=N_{1}(x)^{(2)}\times V_{2}+N_{2}(x)^{(2)}\times V_{3}\\&\bullet\quad\cdots\\&\bullet\quad\text{单元 }n-1:\quad\overline{V(x)}^{(n-1)}=N_1(x)^{(n-1)}\times V_{n-1}+N_2(x)^{(n-1)}\times V_n\end{aligned} 单元 2:V(x)(2)=N1(x)(2)×V2+N2(x)(2)×V3单元 n1:V(x)(n1)=N1(x)(n1)×Vn1+N2(x)(n1)×Vn
对于每个单元,性函数N(x)具有相同的形式,只是坐标不同,对于单元n-1
N 1 ( x ) ( n − 1 ) = x n − x x n − x n − 1 N_1(x)^{(n-1)}=\frac{x_n-x}{x_n-x_{n-1}} N1(x)(n1)=xnxn1xnx
在整个区域,可以得到近似函数相加
V ‾ ( x ) = ∑ e = 1 n − 1 V ‾ e ( x ) \overline{V}(x)=\sum_{e=1}^{n-1}\overline{V}^e(x) V(x)=e=1n1Ve(x)

平面线性三角元

我们选择试函数
U ‾ ( x , y ) = a + b x + c y \overline{U}(x,y)=a+bx+cy U(x,y)=a+bx+cy

U ‾ ( x , y ) = [ 1 x y ] { a b c } \overline{U}(x,y)=\begin{bmatrix}1&x&y\end{bmatrix}\begin{Bmatrix}a\\b\\c\end{Bmatrix} U(x,y)=[1xy] abc

令试函数与待求函数相等
U ‾ ( x 1 , y 1 ) = a + b x 1 + c y 1 = F 1 U ‾ ( x 2 , y 2 ) = a + b x 2 + c y 2 = F 2 U ‾ ( x 3 , y 3 ) = a + b x 3 + c y 3 = F 3 \overline{U}(x_1,y_1)=a+bx_1+cy_1=F_1\\\overline{U}(x_2,y_2)=a+bx_2+cy_2=F_2\\\overline{U}(x_3,y_3)=a+bx_3+cy_3=F_3 U(x1,y1)=a+bx1+cy1=F1U(x2,y2)=a+bx2+cy2=F2U(x3,y3)=a+bx3+cy3=F3
写成矩阵形式
[ 1 x 1 y 1 1 x 2 y 2 1 x 3 y 3 ] { a b c } = { F 1 F 2 F 3 } \begin{bmatrix}1&x_1&y_1\\1&x_2&y_2\\1&x_3&y_3\end{bmatrix}\begin{Bmatrix}a\\b\\c\end{Bmatrix}=\begin{Bmatrix}F_1\\F_2\\F_3\end{Bmatrix} 111x1x2x3y1y2y3 abc = F1F2F3
如果上面的矩阵不奇异,也就是说三个节点不重合而且不共线,则方程可以解出a,b和c
{ a b c } = [ 1 x 1 y 1 1 x 2 y 2 1 x 3 y 3 ] − 1 { F 1 F 2 F 3 } \begin{Bmatrix}a\\b\\c\end{Bmatrix}=\begin{bmatrix}1&x_1&y_1\\1&x_2&y_2\\1&x_3&y_3\end{bmatrix}^{-1}\begin{Bmatrix}F_1\\F_2\\F_3\end{Bmatrix} abc = 111x1x2x3y1y2y3 1 F1F2F3
上式可以写成
U ‾ ( x , y ) = [ N 1 ( x , y ) N 2 ( x , y ) N 3 ( x , y ) ] { F 1 F 2 F 3 } \overline{U}(x,y)=\begin{bmatrix}N_1(x,y)&N_2(x,y)&N_3(x,y)\end{bmatrix}\begin{Bmatrix}F_1\\F_2\\F_3\end{Bmatrix} U(x,y)=[N1(x,y)N2(x,y)N3(x,y)] F1F2F3
因此插值函数可表示为
N 1 ( x , y ) = 1 2 A ( ( y 3 − y 2 ) ( x 2 − x ) − ( x 3 − x 2 ) ( y 2 − y ) ) N 2 ( x , y ) = 1 2 A ( ( y 1 − y 3 ) ( x 3 − x ) − ( x 1 − x 3 ) ( y 3 − y ) ) N 3 ( x , y ) = 1 2 A ( ( y 2 − y 1 ) ( x 1 − x ) − ( x 2 − x 1 ) ( y 1 − y ) ) \begin{gathered} N_{1}(x,y) =\frac1{2A}((y_3-y_2)(x_2-x)-(x_3-x_2)(y_2-y)) \\ N_{2}(x,y) =\frac1{2A}((y_1-y_3)(x_3-x)-(x_1-x_3)(y_3-y)) \\ N_3(x,y) =\frac1{2A}((y_2-y_1)(x_1-x)-(x_2-x_1)(y_1-y)) \end{gathered} N1(x,y)=2A1((y3y2)(x2x)(x3x2)(y2y))N2(x,y)=2A1((y1y3)(x3x)(x1x3)(y3y))N3(x,y)=2A1((y2y1)(x1x)(x2x1)(y1y))
其中
A = 1 2 det ⁡ [ 1 x 1 y 1 1 x 2 y 2 1 x 3 y 3 ] A=\frac{1}{2}\det\begin{bmatrix}1&x_1&y_1\\1&x_2&y_2\\1&x_3&y_3\end{bmatrix} A=21det 111x1x2x3y1y2y3
插值函数也可以表示为
N 1 ( x , y ) = m 11 + m 12 x + m 13 y N 2 ( x , y ) = m 21 + m 22 x + m 23 y N 3 ( x , y ) = m 31 + m 32 x + m 33 y N_{1}(x,y)=m_{11}+m_{12}x+m_{13}y\\N_{2}(x,y)=m_{21}+m_{22}x+m_{23}y\\N_{3}(x,y)=m_{31}+m_{32}x+m_{33}y N1(x,y)=m11+m12x+m13yN2(x,y)=m21+m22x+m23yN3(x,y)=m31+m32x+m33y
其中
m 11 = x 2 y 3 − x 3 y 2 2 A m 12 = y 2 − y 3 2 A m 13 = x 3 − x 2 2 A m 21 = x 3 y 1 − x 1 y 3 2 A m 22 = y 3 − y 1 2 A m 23 = x 1 − x 3 2 A m 31 = x 1 y 2 − x 2 y 1 2 A m 32 = y 1 − y 2 2 A m 33 = x 2 − x 1 2 A m_{11}=\frac{x_2y_3-x_3y_2}{2A}m_{12}=\frac{y_2-y_3}{2A}m_{13}=\frac{x_3-x_2}{2A}\\m_{21}=\frac{x_3y_1-x_1y_3}{2A}m_{22}=\frac{y_3-y_1}{2A}m_{23}=\frac{x_1-x_3}{2A}\\m_{31}=\frac{x_1y_2-x_2y_1}{2A}m_{32}=\frac{y_1-y_2}{2A}m_{33}=\frac{x_2-x_1}{2A} m11=2Ax2y3x3y2m12=2Ay2y3m13=2Ax3x2m21=2Ax3y1x1y3m22=2Ay3y1m23=2Ax1x3m31=2Ax1y2x2y1m32=2Ay1y2m33=2Ax2x1
插值函数满足的条件
N i ( x j , y j ) = { 1 , i = j 0 , i ≠ j 在节点 1 处, N 1 ( x 1 , y 1 ) = 1 , N 2 ( x 1 , y 1 ) = 0 , N 3 ( x 1 , y 1 ) = 0 在节点 2 处, N 1 ( x 2 , y 2 ) = 0 , N 2 ( x 2 , y 2 ) = 1 , N 3 ( x 2 , y 2 ) = 0 在节点 3 处, N 1 ( x 3 , y 3 ) = 0 , N 2 ( x 3 , y 3 ) = 0 , N 3 ( x 3 , y 3 ) = 1 N_{i}(x_{j},y_{j})=\begin{cases}1,\quad i=j\\0,\quad i\neq j\end{cases}\\\text{在节点 1 处,}N_1(x_1,y_1)=1,\quad N_2(x_1,y_1)=0,\quad N_3(x_1,y_1)=0\\\text{在节点 2 处,}N_1(x_2,y_2)=0,\quad N_2(x_2,y_2)=1,\quad N_3(x_2,y_2)=0\\\text{在节点 3 处,}N_1(x_3,y_3)=0,\quad N_2(x_3,y_3)=0,\quad N_3(x_3,y_3)=1 Ni(xj,yj)={1,i=j0,i=j在节点 1 ,N1(x1,y1)=1,N2(x1,y1)=0,N3(x1,y1)=0在节点 2 ,N1(x2,y2)=0,N2(x2,y2)=1,N3(x2,y2)=0在节点 3 ,N1(x3,y3)=0,N2(x3,y3)=0,N3(x3,y3)=1
在三角形内部
∑ i = 1 3 N i ( x , y ) = 1 \sum_{i=1}^3 N_i(x,y)=1 i=13Ni(x,y)=1

等参元

试函数还可以在母单元上进行构建,然后使用几何变换 τ \tau τ将其转换为子单元。几何变换用母单元的坐标来确定子单元的坐标(x,y)
τ : ( ξ , η ) ⟼ ( x , y ) = τ ( ξ , η ) \tau:\quad(\xi,\eta)\quad\longmapsto\quad(x,y)=\tau(\xi,\eta) τ:(ξ,η)(x,y)=τ(ξ,η)
为了定义几何变换,假设子单元是母单元在局部坐标系定义内的函数
x = α 1 + α 2 ξ + α 3 η x=\alpha_1+\alpha_2\xi+\alpha_3\eta x=α1+α2ξ+α3η
image-20240711205715183

上式可以写成矩阵形式
x = [ 1 ξ , η ] [ α 1 α 2 α 3 ] x=\begin{bmatrix}1&\xi,&\eta\end{bmatrix}\begin{bmatrix}\alpha_1\\\alpha_2\\\alpha_3\end{bmatrix} x=[1ξ,η] α1α2α3
利用节点1,2,3处的节点值 x 1 , x 2 , x 3 x_1,x_2,x_3 x1x2x3, 表示为节点解
x 1 = α 1 x 2 = α 1 + α 2 x 3 = α 1 + α 3 \begin{aligned}&x_{1}=\alpha_{1}\\&x_{2}=\alpha_1+\alpha_2\\&x_{3}=\alpha_{1}+\alpha_{3}\end{aligned} x1=α1x2=α1+α2x3=α1+α3
写成矩阵形式
{ x 1 x 2 x 3 } = [ 1 0 0 1 1 0 1 0 1 ] { α 1 α 2 α 3 } \begin{Bmatrix}x_1\\x_2\\x_3\end{Bmatrix}=\begin{bmatrix}1&0&0\\1&1&0\\1&0&1\end{bmatrix}\begin{Bmatrix}\alpha_1\\\alpha_2\\\alpha_3\end{Bmatrix} x1x2x3 = 111010001 α1α2α3
简写为
{ X } = [ A ] { α } \{X\}=[A]\{\alpha\} {X}=[A]{α}
通过求解可以得到参数 α i \alpha_i αi,矩阵的逆为
[ A ] − 1 = [ 1 0 0 − 1 1 0 − 1 0 1 ] [A]^{-1}=\begin{bmatrix}1&0&0\\-1&1&0\\-1&0&1\end{bmatrix} [A]1= 111010001
因此参数 α i \alpha_i αi
{ α 1 α 2 α 3 } = [ 1 0 0 − 1 1 0 − 1 0 1 ] { x 1 x 2 x 3 } \begin{Bmatrix}\alpha_1\\\alpha_2\\\alpha_3\end{Bmatrix}=\begin{bmatrix}1&0&0\\-1&1&0\\-1&0&1\end{bmatrix}\begin{Bmatrix}x_1\\x_2\\x_3\end{Bmatrix} α1α2α3 = 111010001 x1x2x3
将参数 α i \alpha_i αi代入可得
x ( ξ , η ) = [ 1 ξ , η ] [ 1 0 0 − 1 1 0 − 1 0 1 ] { x 1 x 2 x 3 } x(\xi,\eta)=\begin{bmatrix}1&\xi,&\eta\end{bmatrix}\begin{bmatrix}1&0&0\\-1&1&0\\-1&0&1\end{bmatrix}\begin{Bmatrix}x_1\\x_2\\x_3\end{Bmatrix} x(ξ,η)=[1ξ,η] 111010001 x1x2x3
整理可得
x ( ξ , η ) = τ 1 ( ξ , η ) x 1 + τ 2 ( ξ , η ) x 2 + τ 3 ( ξ , η ) x 3 x(\xi,\eta)=\tau_1(\xi,\eta)x_1+\tau_2(\xi,\eta)x_2+\tau_3(\xi,\eta)x_3 x(ξ,η)=τ1(ξ,η)x1+τ2(ξ,η)x2+τ3(ξ,η)x3
而且
τ 1 ( ξ , η ) = 1 − ξ − η τ 2 ( ξ , η ) = ξ τ 3 ( ξ , η ) = η \begin{aligned}&\tau_{1}(\xi,\eta)=1-\xi-\eta\\&\tau_{2}(\xi,\eta)=\xi\\&\tau_{3}(\xi,\eta)=\eta\end{aligned} τ1(ξ,η)=1ξητ2(ξ,η)=ξτ3(ξ,η)=η
同理可以得到y的表达式
y ( ξ , η ) = τ 1 ( ξ , η ) y 1 + τ 2 ( ξ , η ) y 2 + τ 3 ( ξ , η ) y 3 y(\xi,\eta)=\tau_1(\xi,\eta)y_1+\tau_2(\xi,\eta)y_2+\tau_3(\xi,\eta)y_3 y(ξ,η)=τ1(ξ,η)y1+τ2(ξ,η)y2+τ3(ξ,η)y3

  • 14
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值