张量的下标记法与坐标变换

矢量和张量的构成

假设 u ⃗ \vec{u} u 是一个矢量,a是一个定义在笛卡尔坐标系的二阶张量,采用矩阵记法

u ⃗ = { u 1 u 2 u 3 } a = ( a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 ) \vec{u}=\begin{Bmatrix}u_1\\u_2\\u_3\end{Bmatrix}\quad\mathbf{a}=\begin{pmatrix}a_{11}&a_{12}&a_{13}\\a_{21}&a_{22}&a_{23}\\a_{31}&a_{32}&a_{33}\end{pmatrix} u = u1u2u3 a= a11a21a31a12a22a32a13a23a33
采用下标记法,表示
u ⃗ = u i a = a i j \vec{u}=u_i\quad\mathbf{a}=a_{ij} u =uia=aij

爱因斯坦求和约定

如果在张量中的某项重复,则这项下标在取值范围内遍历求和,对于取值范围1-3,下面的公式表示
a i b i = a 1 b 1 + a 2 b 2 + a 3 b 3 c i = a i k x k = { a 11 x 1 + a 12 x 2 + a 13 x 3 a 21 x 1 + a 22 x 2 + a 23 x 3 a 31 x 1 + a 32 x 2 + a 33 x 3 } λ = a i j b i j = a 1 b 1 + a 1 b 2 + a 1 b 3 + a 2 b 1 + a 2 b 2 + a 2 b 3 + a 3 b 1 + a 3 b 2 + a 3 b 3 c i j = a i k b k j = a i 1 b 1 j + a i 2 b 2 j + a i 3 b 3 j ≡ [ C ] = [ A ] × [ B ] a i j = b j i ≡ [ A ] = [ B ] T \begin{aligned}&a_ib_i =a_1b_1+a_2b_2+a_3b_3 \\&c_i=a_{ik}x_k=\begin{Bmatrix}a_{11}x_1+a_{12}x_2+a_{13}x_3\\a_{21}x_1+a_{22}x_2+a_{23}x_3\\a_{31}x_1+a_{32}x_2+a_{33}x_3\end{Bmatrix} \\&\lambda=a_{ij}b_{ij}=a_1b_1+a_1b_2+a_1b_3+a_2b_1+a_2b_2+a_2b_3+a_3b_1+a_3b_2+a_3b_3 \\&c_{ij}=a_{ik}b_{kj}=a_{i1}b_{1j}+a_{i2}b_{2j}+a_{i3}b_{3j}\equiv[C]=[A]\times[B] \\&a_{ij}=b_{ji}\equiv[A]=[B]^{\mathrm{T}}\end{aligned} aibi=a1b1+a2b2+a3b3ci=aikxk= a11x1+a12x2+a13x3a21x1+a22x2+a23x3a31x1+a32x2+a33x3 λ=aijbij=a1b1+a1b2+a1b3+a2b1+a2b2+a2b3+a3b1+a3b2+a3b3cij=aikbkj=ai1b1j+ai2b2j+ai3b3j[C]=[A]×[B]aij=bji[A]=[B]T

Kronecker符号与置换符号

在下标记号法中,有两个特殊的符号:Kronecker 符号和置换符号。这两个符号需要提前定义,以方便矢量和张量的运算。

Kronecker符号定义如下:
δ i j = { 1 i = j 0 i ≠ j } \delta_{ij}=\begin{Bmatrix}1&i=j\\0&i\neq j\end{Bmatrix} δij={10i=ji=j}
因此
δ 11 = δ 22 = δ 33 = 1 δ 12 = δ 21 = δ 13 = δ 31 = δ 23 = δ 32 = 0 \begin{aligned}&\delta_{11}=\delta_{22}=\delta_{33}=1 \\&\delta_{12}=\delta_{21}=\delta_{13}=\delta_{31}=\delta_{23}=\delta_{32}=0\end{aligned} δ11=δ22=δ33=1δ12=δ21=δ13=δ31=δ23=δ32=0
在矩阵表示表示法中Kronecker符号的含义就是单位矩阵,因此

Kronecker符号可以用于加法操作,因此
δ i j b j = δ i 1 b 1 + δ i 2 b 2 + δ i 3 b 3 = b i δ i j a i k = δ 1 j a 1 k + δ 2 j a 2 k + δ 3 j a 3 k = a j k \delta_{ij}b_{j}=\delta_{i1}b_{1}+\delta_{i2}b_{2}+\delta_{i3}b_{3}=b_{i}\\\delta_{ij}a_{ik}=\delta_{1j}a_{1k}+\delta_{2j}a_{2k}+\delta_{3j}a_{3k}=a_{jk} δijbj=δi1b1+δi2b2+δi3b3=biδijaik=δ1ja1k+δ2ja2k+δ3ja3k=ajk
置换符号 e i j k e_{ijk} eijk的定义是
e i j k = { 1 i , j , k = 1 , 2 , 3 2 , 3 , 1 3 , 1 , 2 − 1 i , j , k = 3 , 2 , 1 2 , 1 , 3 1 , 3 , 2 0 其他 } e_{ijk}=\begin{Bmatrix}1&i,j,k=1,2,3&2,3,1&3,1,2\\-1&i,j,k=3,2,1&2,1,3&1,3,2\\&0&\text{其他}\end{Bmatrix} eijk= 11i,j,k=1,2,3i,j,k=3,2,102,3,12,1,3其他3,1,21,3,2

可以看出
e i j k = e j k i = e k i j = − e i k j = − e k j i = e j i k e k k i = 0 e i j k e i m n = δ j m δ k n − δ j n δ m k e_{ijk}=e_{jki}=e_{kij}=-e_{ikj}=-e_{kji}=e_{jik}\\e_{kki}=0\\e_{ijk}e_{imn}=\delta_{jm}\delta_{kn}-\delta_{jn}\delta_{mk} eijk=ejki=ekij=eikj=ekji=ejikekki=0eijkeimn=δjmδknδjnδmk
采用这个定义,两个矢量的叉乘可以表示为
u ⃗ × v ⃗ = e i j k u j v k \vec{u}\times\vec{v}=e_{ijk}u_jv_k u ×v =eijkujvk
下标记号法规则

下标记号法有三个重要规则,分别如下:

· 在表达式的某项中,下标可以出现一次或者两次。如果下标在某项中没有重复出现,这就意味着该下标取所有值。没有重复出现的下标被称为自由标。在每一项中自由标必须相同。
· 如果某项中下标重复出现了两次,那么就意味着把该项下标在取值范围内遍历求和。
重复出现的下标被称为哑标(dummy indices)。
· 自由标和哑标的符号可以更换,而不会改变方程的含义。自由标的数量和位置表示了张量的阶数。

下面的表示方法是符合规则的:
A i k x k , A i j B i k C n k , a i = A k i B k j x j + C i k u k A_{ik}x_k,\quad A_{ij}B_{ik}C_{nk},\quad a_i=A_{ki}B_{kj}x_j+C_{ik}u_k Aikxk,AijBikCnk,ai=AkiBkjxj+Cikuk

但是

$$

$$
是错误用法

矢量的坐标变换

考虑三维欧式空间内的任意两个坐标系 e 1 ⃗ , e 2 ⃗ , e 3 ⃗ \vec{e_1},\vec{e_2},\vec{e_3} e1 ,e2 ,e3 ,和 e ⃗ 1 ′ , e ⃗ 2 ′ , e ⃗ 3 ′ \vec{e}_1^{\prime},\vec{e}_2^{\prime},\vec{e}_3^{\prime} e 1,e 2,e 3
[ J ] = ∥ ∂ e i ′ ∂ e j ∥ = [ ∂ e 1 ′ ∂ e 1 ∂ e 1 ′ ∂ e 2 ∂ e 1 ′ ∂ e 3 ∂ e 2 ′ ∂ e 1 ∂ e 2 ′ ∂ e 2 ∂ e 2 ′ ∂ e 3 ∂ e 3 ′ ∂ e 1 ∂ e 3 ′ ∂ e 2 ∂ e 3 ′ ∂ e 3 ] [J]=\left\|\frac{\partial e_i^{\prime}}{\partial e_j}\right\|=\begin{bmatrix}\frac{\partial e_1^{\prime}}{\partial e_1}&\frac{\partial e_1^{\prime}}{\partial e_2}&\frac{\partial e_1^{\prime}}{\partial e_3}\\\frac{\partial e_2^{\prime}}{\partial e_1}&\frac{\partial e_2^{\prime}}{\partial e_2}&\frac{\partial e_2^{\prime}}{\partial e_3}\\\frac{\partial e_3^{\prime}}{\partial e_1}&\frac{\partial e_3^{\prime}}{\partial e_2}&\frac{\partial e_3^{\prime}}{\partial e_3}\end{bmatrix} [J]= ejei = e1e1e1e2e1e3e2e1e2e2e2e3e3e1e3e2e3e3
如果雅可比矩阵存在,那么该矩阵就存在唯一的逆矩阵

在图c.1所示的笛卡尔坐标系到新坐标系之间的变换矩阵,在下标记法中,变换矩阵的表达式为
e i ′ = l i j e j e_i^{\prime}=l_{ij}e_j ei=lijej
其中
l i j = c o s ( e ⃗ i ′ , e ⃗ j ′ ) = { l 11 l 12 l 13 l 21 l 22 l 23 l 31 l 32 l 33 } l_{ij}=cos(\vec{e}_i^{\prime},\vec{e}_j^{\prime})=\begin{Bmatrix}l_{11}&l_{12}&l_{13}\\l_{21}&l_{22}&l_{23}\\l_{31}&l_{32}&l_{33}\\\end{Bmatrix} lij=cos(e i,e j)= l11l21l31l12l22l32l13l23l33
在矩阵表示为
{ e ′ } = [ Q ] { e } \{e^{\prime}\}=[Q]\{e\} {e}=[Q]{e}
image-20240713024115951

例 绕坐标轴3逆时针旋转

两个坐标基矢量之间的关系是
e 1 ′ ⃗ = cos ⁡ ( ψ ) e 1 ⃗ + sin ⁡ ( ψ ) e 2 ⃗ + 0 × e 3 ⃗ e 2 ′ ⃗ = − sin ⁡ ( ψ ) e 1 ⃗ + cos ⁡ ( ψ ) e 2 ⃗ + 0 × e 3 ⃗ e 3 ′ ⃗ = 0 × e 1 ⃗ + 0 × e 2 ⃗ + 1 × e 3 ⃗ \begin{aligned}\vec{e_{1}^{\prime}}& =\cos(\psi)\vec{e_1}+\sin(\psi)\vec{e_2}+0\times\vec{e_3} \\\vec{e_{2}^{\prime}}& =-\sin(\psi)\vec{e_1}+\cos(\psi)\vec{e_2}+0\times\vec{e_3} \\\vec{e_{3}^{\prime}}& =0\times\vec{e_{1}}+0\times\vec{e_{2}}+1\times\vec{e_{3}} \end{aligned} e1 e2 e3 =cos(ψ)e1 +sin(ψ)e2 +0×e3 =sin(ψ)e1 +cos(ψ)e2 +0×e3 =0×e1 +0×e2 +1×e3
其中矩阵[Q]为

其中矩阵[Q]为正交矩阵,因此

在下标记法中

  • 5
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值