矢量和张量的构成
假设 u ⃗ \vec{u} u是一个矢量,a是一个定义在笛卡尔坐标系的二阶张量,采用矩阵记法
u ⃗ = { u 1 u 2 u 3 } a = ( a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 ) \vec{u}=\begin{Bmatrix}u_1\\u_2\\u_3\end{Bmatrix}\quad\mathbf{a}=\begin{pmatrix}a_{11}&a_{12}&a_{13}\\a_{21}&a_{22}&a_{23}\\a_{31}&a_{32}&a_{33}\end{pmatrix} u=⎩
⎨
⎧u1u2u3⎭
⎬
⎫a=
a11a21a31a12a22a32a13a23a33
采用下标记法,表示
u ⃗ = u i a = a i j \vec{u}=u_i\quad\mathbf{a}=a_{ij} u=uia=aij
爱因斯坦求和约定
如果在张量中的某项重复,则这项下标在取值范围内遍历求和,对于取值范围1-3,下面的公式表示
a i b i = a 1 b 1 + a 2 b 2 + a 3 b 3 c i = a i k x k = { a 11 x 1 + a 12 x 2 + a 13 x 3 a 21 x 1 + a 22 x 2 + a 23 x 3 a 31 x 1 + a 32 x 2 + a 33 x 3 } λ = a i j b i j = a 1 b 1 + a 1 b 2 + a 1 b 3 + a 2 b 1 + a 2 b 2 + a 2 b 3 + a 3 b 1 + a 3 b 2 + a 3 b 3 c i j = a i k b k j = a i 1 b 1 j + a i 2 b 2 j + a i 3 b 3 j ≡ [ C ] = [ A ] × [ B ] a i j = b j i ≡ [ A ] = [ B ] T \begin{aligned}&a_ib_i =a_1b_1+a_2b_2+a_3b_3 \\&c_i=a_{ik}x_k=\begin{Bmatrix}a_{11}x_1+a_{12}x_2+a_{13}x_3\\a_{21}x_1+a_{22}x_2+a_{23}x_3\\a_{31}x_1+a_{32}x_2+a_{33}x_3\end{Bmatrix} \\&\lambda=a_{ij}b_{ij}=a_1b_1+a_1b_2+a_1b_3+a_2b_1+a_2b_2+a_2b_3+a_3b_1+a_3b_2+a_3b_3 \\&c_{ij}=a_{ik}b_{kj}=a_{i1}b_{1j}+a_{i2}b_{2j}+a_{i3}b_{3j}\equiv[C]=[A]\times[B] \\&a_{ij}=b_{ji}\equiv[A]=[B]^{\mathrm{T}}\end{aligned} aibi=a1b1+a2b2+a3b3ci=aikxk=⎩
⎨
⎧a11x1+a12x2+a13x3a