Java 解洛谷PP5322 [BJOI2019] 排兵布阵,包含完整的分组背包状态转移方法说明,通俗易懂

10 篇文章 1 订阅

01.题目及链接

题目链接:https://www.luogu.com.cn/problem/P5322
在这里插入图片描述在这里插入图片描述

02.分组背包说明

分组背包:有k组物品,N个物品,一个容量是C的背包。每组物品有若干个,同一组内的物品最多只能选一个。

状态转移方程

定义状态: dp[k][j] 最大承重为j,有前k组物品可选时的最大价值

for (int k = 1; k <= groupNum; k++) {// 所属组k
	for (int j = 0; j <= capacity; j++) {// 容量j
		for (int i = 0; i < I; i++) {// 所属分组k的物品I
			dp[k][j]=Math.max(dp[k - 1][j],
				dp[k - 1][j - 物品i的重量] + 物品i的价值)}
	}
}

状态转移方程压缩

定义状态:dp[j] 最大容量为j的前提下,物品的最大价值

for (int k = 1; k <= groupNum; k++) {// 所属组k
	for (int j = capacity; j >= 0; j--) {// 容量j
		for (int i = 0; i < I; i++) {// 所属分组k的物品I
			dp[j]=Math.max(dp[j], dp[j-data[i][0]]+data[i][1]);
		}
	}
}

03.解题思路

题意分析:小 C 通过某些途径得知了其他 s 名玩家即将使用的策略,他想知道他应该使用什么策略来最大化自己的总分==>小C的调兵策略只有一个,不能动态改变调兵策略

算法执行流程

  1. 分别对按座城堡对每一个玩家派去的士兵数量升序排序
  2. 状态定义:分组的组是城堡的个数(假设为k),定义状态dp[i]:表示士兵人数为i时小 C 总分的最大值
  3. 状态转移:dp[j]=Math.max(dp[j], dp[j-2*(第i个人派去第k座城堡的数量)-1]+k*i);

04.具体代码

	public static void main(String[] args) throws IOException {
		BufferedReader in=new BufferedReader(new InputStreamReader(System.in));
		String[] tmps=in.readLine().split(" ");
		// s名玩家   		n座城堡(组)		 玩家有 m名士兵(容量)
		int s=Integer.valueOf(tmps[0]),n=Integer.valueOf(tmps[1]),m=Integer.valueOf(tmps[2]);
		int[][] data=new int[s+1][n+1];
		for (int i = 1; i <= s; i++) {
			tmps=in.readLine().split(" ");
			for (int j = 1; j <= n; j++) {
				data[i][j]=Integer.valueOf(tmps[j-1]);
			}
		}
		//数组按列进行排序(从小到大排序)
		for (int j = 1; j <= n; j++) {
			int[] tmp=new int[s+1]; 
			for (int i = 1; i <= s; i++) {
				tmp[i]=data[i][j];
			}
			Arrays.sort(tmp);
			for (int i = 1; i <= s; i++) {
				data[i][j]=tmp[i];
			}
		}
		int[] dp=new int[m+1];
		for (int k = 1; k <= n; k++) {
			for (int j = m; j >= 1; j--) {
				for (int i = 1; i <= s; i++) {
					if(j>=2*data[i][k]+1) dp[j]=Math.max(dp[j], dp[j-2*data[i][k]-1]+k*i);
				}
			}
		}
		System.out.println(dp[m]);
		in.close();
	}

05.更多背包学习

https://blog.csdn.net/qq_46237746/article/details/123908504

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值