linux服务器后台训练模型(关闭终端之后训练也会继续)

使用nohup python train,py &命令进行训练,train.py是你的训练文件,默认会将信息打印在当前目录的nohup.out下,可以随时查看。
训练之后断开终端再重新连接,输入nvidia-smi可以看到
在这里插入图片描述
最后一行的20789就是我们的训练进程正在使用gpu啦

### 如何在AutoDL服务器训练机器学习模型 #### 注册与登录 进入AutoDL官方网站,在浏览器中访问该网站并完成注册过程。注册完成后,使用所创建的账户信息登录到平台[^1]。 #### 租赁计算资源 登录成功后,选择合适的显卡资源进行租赁操作。点击“租赁”按钮,并根据需求挑选适合的基础环境配置选项。对于依赖PyTorch框架的情况,默认自动设置好的PyTorch环境是一个便捷的选择[^3]。 #### 数据集准备 针对具体的应用场景准备好相应的数据集文件。如果是执行像YOLOv8这样的目标检测任务,则需按照官方文档指导整理标注图像资料以及对应的标签文件格式[^2]。 #### 使用SSH连接至服务器 借助VSCode集成开发环境中内置的支持功能,通过SSH协议建立安全通道来管理远程Linux系统的命令行界面。这一步骤允许开发者直接从本地编辑器操控云端实例上的各类活动,包括但不限于编写脚本、启动程序和服务监控等。 #### 防止SSH会话意外终止影响长期运行的任务 为了避免由于网络波动造成SSH链接突然断裂而导致正在进行中的大规模模型迭代被打断甚至失败的问题,建议采用`tmux`工具构建持久化的终端会话窗口。这样即使客户端侧发生异常掉线事件也不会干扰后台正在执行的工作流进程[^4]。 ```bash # 安装tmux (如果尚未安装的话) sudo apt-get install tmux # 创建一个新的tmux session用于承载训练作业 tmux new -s my_train_session # 在此session内激活虚拟环境(如果有),加载必要的库和模块,随后发起训练指令... source activate your_env_name python train.py # 脱离当前session但仍保留它在后台继续工作 Ctrl+b d ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值