蓝桥杯 Day17 java组 并查集

判断连通性除了可以用学习过的 BFS、DFS 外,还可以用一个叫”并查集“的算法

 

并查集又可以理解为不相交集合上的合并查询

并查集是一种非常精巧而实用的数据结构,它主要用于处理一些不相交集合的合并和查询问题。经典的应用有:判断连通性、最小生成树 Kruskal 算法、最近公共祖先(Least Common Ancestors, LCA)等。并查集在算法竞赛中也十分常见:一是简单且高效,二是应用很直观,三是容易和其他数据结构和算法结合。

第一题 剪邮票

 

 如果用BFS做

import java.util.*;


public class Main {
    private static int[] map = {1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14};
    private static int count = 0;

    public static void main(String[] args) {
        //Scanner s = new Scanner(System.in);
        prem(0, 11);
        System.out.println(count/120);
    }

    private static void prem(int s, int t) {//求12个数取5个的全排列
        if (s == 5) {
            fun1();
            for (int i = 0; i < 5; i++) {
                System.out.print(map[i] + " ");
            }
            System.out.println();
            return;
        }

        for (int i = s; i <= t; i++) {
            swap(s, i);
            prem(s + 1, t);
            swap(s, i);
        }
    }

    private static void fun1() {
        int[] visited = {1, 0, 0, 0, 0};
        int temp = 1;
        Queue<Integer> queue = new LinkedList<>();
        queue.add(map[0]);
        while (!queue.isEmpty()) {
            int x = queue.poll();
            //System.out.println(x);
            for (int i = 1; i <= 4; i++) {
                if ((map[i] - 1 == x && visited[i] == 0) || (map[i] + 5 == x && visited[i] == 0) || (map[i] - 5 == x && visited[i] == 0) || (map[i] + 1 == x && visited[i] == 0)) {
                    visited[i] = 1;
                    queue.add(map[i]);
                    temp++;
                }
            }
        }

        if (temp == 5) {
            count++;
        }
    }

    private static void swap(int s, int t) {
        int temp;
        temp = map[s];
        map[s] = map[t];
        map[t] = temp;
    }
}

因为全排列前面有重复的情况,所以最后的结果要除(5*4*3*2*1)

感觉bfs比并查集简单

 第二题 蓝桥幼儿园

样例输入

5 5 
2 1 2
1 1 3
2 1 3
1 2 3 
2 1 

样例输出

NO
YES
YES
import java.util.*;

public class Main {
	private static int[] map;
	
	public static void main(String[] args) {
		Scanner scan = new Scanner(System.in);
		int N = scan.nextInt();
		int M = scan.nextInt();
		map = new int[N+1];
		for (int i = 1; i <= N; i++) {
			map[i] = i;
		}
		for (int i = 1; i <= M; i++) {
			int op = scan.nextInt();
			int x = scan.nextInt();
			int y = scan.nextInt();
			if(op == 1) {
				merge_set(x,y);
			}
			
			if(op == 2) {
				if(find_set(x) == find_set(y)) {
					System.out.println("Yes");
				}else {
					System.out.println("No");
				}
			}
			
		}
		scan.close();
	}
	
	private static void merge_set(int x,int y) {
		x = find_set(x);
		y = find_set(y);
		if(x!=y) {
			map[x] = map[y];
		}
	}
	
	private static int find_set(int k) {
		if(k != map[k]) {
			map[k] = find_set(map[k]);
		}
		return map[k];
	}
}

过不了全部的数据,不知道为什么,头秃了。

第三题 合根植物 

 

样例输入

5 4
16
2 3
1 5
5 9
4 8
7 8
9 10
10 11
11 12
10 14
12 16
14 18
17 18
15 19
19 20
9 13
13 17

样例输出

5

 

import java.util.*;

public class Main {
	private static int[] map;
	private static int m;
	private static int n;
	private static int count = 0;
	
	public static void main(String[] args) {
		Scanner scan = new Scanner(System.in);
		m = scan.nextInt();
		n = scan.nextInt();
		map = new int[m*n+1];
		init();
		int k = scan.nextInt();
		for(int i = 1;i<=k;i++) {
			int x = scan.nextInt();
			int y = scan.nextInt();
			merge_set(x, y);
		}
		for(int i = 1;i<=n*m;i++) {
			if(map[i] == i) {
				count++;
			}
		}
		System.out.println(count);
	}
	
	private static void init() {
		for(int i =1;i<=m*n;i++) {
			map[i] = i;
		}
	}
	
	private static int find_set(int k) {
		if(k!=map[k]) {
			map[k] = find_set(map[k]);
			return map[k];
		}
		return k;
	}
	
	private static void merge_set(int x,int y) {
		if(find_set(x)!=find_set(y)) {
			map[find_set(x)] = find_set(y);
		}
	}
}

第四题 修改数组

 

样例输入

5
2 1 1 3 4

 

样例输出

2 1 3 4 5
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值