概率
文章平均质量分 80
童年吹梦
这个作者很懒,什么都没留下…
展开
-
概率论与数理统计(8)
假设检验实际推断原理假设检验概念两类错误显著性检验一般步骤正态总体参数的假设检验实际推断原理小概率事件在一次试验中实际上不会发生,又称小概率原理。假设检验假设是关于总体的论断或命题,常用字母“H”“H”“H”表示,分为基本假设"H0""H_0""H0"(又称原假设、零假设)和备选假设"H1""H_1""H1"(又称备择假设,对立假设)。还可将假设分为参数假设和非参数假设,参数假设是指已知总体分布函数形式,对其中未知参数的假设,其他假设就是非参数假设,也可将假设分为简单假设和复杂假设,完全决定原创 2021-08-28 16:53:26 · 491 阅读 · 0 评论 -
概率论与数理统计(7)
参数估计点估计无偏性有效性一致性(相合性)矩估计最大似然估计法似然函数最大似然估计步骤区间估计置信区间置信区间的求法(枢轴量法)一个正态总体参数的区间估计两个正态总体参数的区间估计点估计用样本X1,X2,...,XnX_1,X_2,...,X_nX1,X2,...,Xn构造的统计量θ^(X1,X2,...,Xn)\hat{\theta}(X_1,X_2,...,X_n)θ^(X1,X2,...,Xn)来估计未知参数θ\thetaθ称为点估计,θ^(X1,X2,...,Xn)\hat{\t原创 2021-08-28 16:15:53 · 145 阅读 · 0 评论 -
概率论与数理统计(6)
数理统计的基本概念总体、样本、统计量和样本数字特征总体样本统计量样本数字特征样本数字特征的性质常见抽样分布χ2\chi^2χ2分布性质t分布性质F分布性质正态分布一个正态总体的抽样分布两个正态总体的抽样分布总体、样本、统计量和样本数字特征总体所研究对象某项数量指标X的全体(就是一个随机变量)称为总体。样本如果X1,X2,...,XnX_1,X_2,...,X_nX1,X2,...,Xn相互独立且都与总体X同分布,则称X1,X2,...,XnX_1,X_2,...,X_nX1,X2,.原创 2021-08-28 15:12:06 · 507 阅读 · 0 评论 -
概率论与数理统计(5)
大数定律及中心极限定理切比雪夫不等式依概率收敛依分布收敛大数定律切比雪夫大数定律伯努利大数定律辛钦大数定律中心极限定理棣莫弗-拉普拉斯定理列维-林德伯格定理切比雪夫不等式设随机变量X的期望EX和方差DX存在,则对任意的ε>0\varepsilon>0ε>0,总有P{∣X−EX∣≥ε}≤DXε2 P\{|X-EX|\ge\varepsilon\}\le{DX \over \varepsilon^2}P{∣X−EX∣≥ε}≤ε2DX依概率收敛设X1,X2,....,Xn,.原创 2021-08-28 11:49:53 · 145 阅读 · 0 评论 -
概率论与数理统计(4)
随机变量的数字特征随机变量的数学期望和方差数学期望离散型连续型数学期望的性质随机变量函数的期望离散型连续型随机变量的方差定义性质常见分布的期望与方差矩、协方差和相关系数矩协方差性质相关系数性质独立与不相关随机变量的数学期望和方差数学期望离散型连续型数学期望的性质随机变量函数的期望离散型连续型随机变量的方差定义DX=E(X−EX)2=EX2−(EX)2DX=E(X-EX)^2=EX^2-(EX)^2DX=E(X−EX)2=EX2−(EX)2称为X的方差。性质一般情况下原创 2021-08-28 00:19:34 · 234 阅读 · 0 评论 -
概率论与数理统计(3)
多维随机变量及其分布二维随机变量及其分布二维随机变量定义分布函数分布函数的性质二维随机变量的边缘分布二维随机变量的条件分布二维离散型随机变量概率分布性质边缘概率分布条件概率分布二维连续型随机变量概率密度函数的性质边缘密度条件概率随机变量的独立性二维均匀分布和二维正态分布二维均匀分布二维正态分布随机变量函数的分布X,Y均为离散型随机变量X,Y均为连续型随机变量公式法分布函数法最值函数X离散,Y连续特殊情况——可加性分布二维随机变量及其分布二维随机变量定义X,Y均为一维随机变量,则(X,Y)称为二维随原创 2021-08-27 13:04:05 · 216 阅读 · 0 评论 -
概率论与数理统计(2)
随机变量及其概率分布随机变量及其分布函数随机变量分布函数分布函数的性质概率计算离散型随机变量和连续型随机变量离散型随机变量定义概率分布分布律性质连续型随机变量定义概率密度的性质常用分布离散型随机变量泊松定理连续型随机变量(均匀、指数)正态分布随机变量函数的分布离散型连续型随机变量及其分布函数随机变量在样本空间Ω\varOmegaΩ上的实值函数X=X(ω),ω∈ΩX=X(\omega),\omega\in\varOmegaX=X(ω),ω∈Ω,称X(ω)X(\omega)X(ω)为随机变量,简记XX原创 2021-08-26 21:18:24 · 254 阅读 · 0 评论 -
概率论与数理统计(1)
随机事件和概率事件基本概念事件的关系事件的运算律概率、条件概率、独立性概率的定义概率的性质条件概率乘法公式全概率公式贝叶斯公式事件的独立性古典概型与伯努利概型古典概型几何概型伯努利概型事件基本概念(1)由一个样本点组成的子集是最简单时间,称为基本事件。(2)每次实验必有Ω\varOmegaΩ中某一基本事件(样本点)发生,也就是每次实验Ω\varOmegaΩ必然发生,称Ω\varOmegaΩ为必然事件。(3)把不包含任何样本点的空集∅\varnothing∅看成一个事件,每次实验∅\varno原创 2021-08-26 18:54:40 · 148 阅读 · 0 评论