前言:开始整理这些资料的时候,已经是本人研一下学期的开学了。然而在遥远的4年前本人因为疫情的原因居家学习的时候,数学分析一度是我的噩梦。但时至今日,越来越发现这些基础的数学问题的重要性。尽管本人就读的本科一再强调其学生无不具有扎实的数理基础,但对于学渣本渣而言,很多东西还需要重新拾起,拓展学习。打算以此为契机,以数学分析两册教材为大纲,加之以早数值分析、信号系统、高等工程数学(研究生课程)等相关数学内容。求学时只知道做题,卷GPA,忽略了用诸如MATLAB等软件对数学问题实际应用,总觉得学了但又不会用,拿起来就忘了,希望在这里可以有所补充。主打一个用什么学什么,不定期更新。
单变量微积分
第一章 极限
1.1 实数
1.1.1 整数与有理数
1.1.2 十进制小数
1.1.3 实数域
1.1.4 数轴
1.2 数列极限
1.2.1 数列极限的定义
1.2.2 收敛数列的性质
1.2.3 实数完备性若干等价命题
1.2.4 发散到无穷大的数列
1.2.5 Stolz定理
1.3 函数极限
1.3.1 函数
1.3.2 函数在无穷大处的极限
1.3.3 函数在一点处的极限
1.3.4 函数极限的性质和运算
1.3.5 函数极限存在的判别法
1.3.6 两个重要极限
1.3.7 无穷大量和无穷小量
第二章 单变量函数的连续性
2.1 连续函数的基本概念
2.1.1 连续的定义
2.1.2 左(右)连续与间断
2.1.3 连续函数的运算
2.1.4 初等函数额定连续性
2.2 闭区间上连续函数的性质
2.2.1 零点定理与介值定理
2.2.2 有界性与最大最小值定理
2.2.3 一致连续性
第三章 单变量函数的微分学
3.1 导数
3.1.1 导数的定义
3.1.2 导数的四则运算
3.1.3 复合函数的求导法则
3.1.4 反函数的求导法则
3.1.5 基本初等函数的导数
3.1.6 高阶导数
3.17 参数方程表示的函数的导数
3.2 微分
3.2.1 微分的定义
3.2.2 微分的运算与一阶微分形式的不变性
3.3 微分中值定理
3.3.1 Fermat定理和Rolle定理
3.