NumPy库学习之random.randint函数
一、简介
np.random.randint
是 NumPy 库中的一个函数,用于生成指定范围内的随机整数。这个函数非常有用,尤其是在需要随机抽样或进行概率模拟时。
二、语法和参数
np.random.randint(low, high=None, size=None, dtype=int)
low
: 随机数生成的下限(包含)。high
: 随机数生成的上限(不包含)。如果为None
,则上限默认为low
。size
: 输出数组的形状。如果为None
,则只生成一个随机整数。dtype
: 输出数组的数据类型。默认为np.int
。
三、实例
1. 生成一个随机整数
3.1.1 单个随机整数
import numpy as np
# 设置随机种子以获得可复现的结果
np.random.seed(0)
random_int = np.random.randint(1, 100)
print(random_int)
输出:
42
2. 生成随机整数数组
3.2.1 一维随机整数数组
# 生成包含5个1到100之间的随机整数的一维数组
random_integers_1d = np.random.randint(1, 100, 5)
print(random_integers_1d)
输出:
[42 68 84 57 77]
3.2.2 多维随机整数数组
# 生成包含2行3列,1到10之间的随机整数的二维数组
random_integers_2d = np.random.randint(1, 10, (2, 3))
print(random_integers_2d)
输出:
[[3 8 7]
[2 4 5]]
四、注意事项
- 当
high
参数为None
时,生成的随机数将在[0, low)
范围内。 np.random.randint
包含下限但不包含上限,即[low, high)
。- 使用
size
参数可以生成任意形状的数组,但所有元素都是随机整数。 - 可以通过设置
dtype
参数来指定输出数组的数据类型,例如np.int32
或np.int64
。 - 使用
np.random.seed
可以设置随机数生成器的种子,使得随机数生成过程可复现。