mpt3工具箱学习记录

mpt_demo_set1

Polyhedron(多面体)的基本操作
基础知识
H-representation

用有限个超平面和半空间定义多面体
形式:Ax<b; Aex=be

V-represention

用有限个点(凸集的顶点)和射线(代表方向)定义多面体
形式:extreme points(vertices) V and rays R

创建Polyhedron object
H-representation

P = Polyhedron(‘A’, A, ‘b’, b, ‘lb’,lb,‘ub’,ub,‘Ae’, Ae, ‘be’, be)
例如

P1 = Polyhedron('A',[-1,0.5,2;-3,-1.5,0.2;0.4,-1.8,-1],'b',[2;3;1],'lb',[-1;-1;-1],'ub',[1;1;2],'Ae',[1,2,0],'be',0)
plot(P1,'color','o')

得到的绘图结果为:
在这里插入图片描述

V-representation

P = Polyhedron(‘V’,V,‘R’,R)
V表示凸集的顶点,R表示方向,如果构成有界的凸集,则没有R省略。
例如

v1 = [-1,0];
v2 = [1,0.5];
v3 = [1,-0.5];
V = [v1;v2;v3]
R = [1,0.1];
P2 = Polyhedron('V',V,'R',R);
P3 = Polyhedron('V',V);
plot(P2,'color','g',P3,'color','b')

得到的绘图结果为:
在这里插入图片描述

类似数组操作

P1,P2,P3均为Polyhedron
P = [P1,P2,P3]
R1 = P(1)
R2 = P(1:3)
R3 = P([3 2]),即R3 = [P(3),P(2)]
R4 = P(end)

查看polyhedron的相关属性(值)
  1. 基本值
    H = [A, b]
    He = [Ae, be]
    P是一个Polyhedron
    H-representation的参数包括A, b, H, Ae, be, He
A = P.A
b = P.b
Ae = P.Ae
be = P.be
H = P.H
He = P.He

V-representation的参数包括V, R

V = P.V
R = P.R

一般无论是哪种方法建立的Polyhedron,都具有这些参数。
如果需要查看是否用H-representation或V-representation表示,则可以查看如下的值:

P.hasHRep
P.hasVRep
  1. 维数,即Polyhedron的维数
P.Dim

注意:不是x的维数!

  1. data
    任何和Polyhedron共存的数据都可以存在data中,data是一个结构体,其初始化与赋值方法同结构体相同,如下:
# 方式一
P = Polyhedron('A', [1 -2], 'b', 0.5, 'Data' ,struct('alpha', a, 'deta', '-pi/3)) ;
# 方式二
P.Data.theta = ('name1', 'name2');
P.Data.c = [0.5, 0.4, 0.3, 0.2, 0.1];
  1. 其他
# 是否为空集
P.isEmptySet
# 是否有界
P.isBounded
#是否满维(Polyhedron与x维数是否相同)
P.isFullDim
存疑

上述是非常简单的基本操作,在mpt3工具箱的demo中即可查看。在学习的过程中发现分不清Polyhedron(多面体)和Polytope(多胞形),查找相关资料之后的理解是:
多面体的定义是有限个超平面和半空间的交集;
多胞形是指在n维空间中的一类特殊的凸多面体,一个多胞形就是一个内部非空的紧凸多面体。当dim X=2时,一般不称多胞形,而称之为多边形。

1 2/3维图像分割工具箱 2 PSORT粒子群优化工具箱 3 matlab计量工具箱Lesage 4 MatCont7p1 5 matlab模糊逻辑工具箱函数 6 医学图像处理工具箱 7 人工蜂群工具箱 8 MPT3安装包 9 drEEM toolbox 10 DOMFluor Toolbox v1.7 11 Matlab数学建模工具箱 12 马尔可夫决策过程(MDP)工具箱MDPtoolbox 13 国立SVM工具箱 14 模式识别与机器学习工具箱 15 ttsbox1.1语音合成工具箱 16 分数阶傅里叶变换的程序FRFT 17 魔方模拟器与规划求解 18 隐马尔可夫模型工具箱 HMM 19 图理论工具箱GrTheory 20 自由曲线拟合工具箱ezyfit 21 分形维数计算工具箱FracLab 2.2 22 For-Each 23 PlotPub 24 Sheffield大学最新遗传算法工具箱 25 Camera Calibration 像机标定工具箱 26 Qhull(二维三维三角分解、泰森图)凸包工具箱 2019版 27 jplv7 28 MatlabFns 29 张量工具箱Tensor Toolbox 30 海洋要素计算工具箱seawater 31 地图工具箱m_map 32 othercolor配色工具包 33 Matlab数学建模工具箱 34 元胞自动机 35 量子波函数演示工具箱 36 图像局域特征匹配工具箱 37 图像分割graphcut工具箱 38 NSGA-II工具箱 39 chinamap中国地图数据工具箱(大陆地区) 40 2D GaussFit高斯拟合工具箱 41 dijkstra最小成本路径算法 42 多维数据快速矩阵乘法 43 约束粒子群优化算法 44 脑MRI肿瘤的检测与分类 45 Matlab数值分析算法程序 46 matlab车牌识别完整程序 47 机器人工具箱robot-10.3.1 48 cvx凸优化处理工具箱 49 hctsa时间序列分析工具箱 50 神经科学工具箱Psychtoolbox-3-PTB 51 地震数据处理工具CREWES1990版 52 经济最优化工具箱CompEcon 53 基于约束的重构分析工具箱Cobratoolbox 54 Schwarz-Christoffel Toolbox 55 Gibbs-SeaWater (GSW)海洋学工具箱 56 光声仿真工具箱K-Wave-toolbox-1.2.1 57 语音处理工具箱Sap-Voicebox 58 贝叶斯网工具箱Bayes Net Toolbox(BNT) 59 计算机视觉工具箱VFfeat-0.9.21 60 全向相机校准工具箱OCamCalib_v3.0 61 心理物理学数据分析工具箱Palamedes1_10_3 62 生理学研究工具箱EEGLAB 63 磁共振成像处理工具箱CONN 18b 64 matlab 复杂网络工具箱 65 聚类分析工具箱FuzzyClusteringToolbox 66 遗传规划matlab工具箱 67 粒子群优化工具箱 68 数字图像处理工具箱DIPUM Toolbax V1.1.3 69 遗传算法工具箱 70 鱼群算法工具箱OptimizedAFSAr 71 蚁群算法工具箱 72 matlab优化工具箱 73 数据包络分析工具箱 74 图像分割质量评估工具包 75 相关向量机工具箱 76 音频处理工具箱 77 nurbs工具箱 78 Nurbs-surface工具箱 79 grabit数据提取工具箱 80 量子信息工具箱QLib 81 DYNAMO工具箱 82 NEDC循环的整车油耗量 83 PlotHub工具箱 84 MvCAT_Ver02.01 85 Regularization Tools Version 4.1 86 MatrixVB 4.5(含注册) 87 空间几何工具箱 matGeom-1.2.2 88 大数计算工具箱 VariablePrecisionIntegers 89 晶体织构分析工具包 mtex-5.7.0 90 Minimal Paths 2工具箱 91 Matlab数学建模工具箱
### MPT-3 模型介绍及应用 MPT(MosaicPromptTuning)系列模型是由 MosaicML 开发的一组大型语言模型,旨在解决自然语言处理领域中的多种复杂任务。以下是关于 MPT-3 系列模型的具体介绍及其应用场景。 #### 一、MPT-3 模型概述 MPT-3 系列模型主要包括多个变体,例如 MPT-7B 和 MPT-30B。这些模型具有强大的上下文理解能力和多场景适用性。其中: - **MPT-30B** 是该系列中规模较大的版本之一,在多项零样本学习任务中表现出优异性能。相比于 GPT-3MPT-30B 在九项情景学习任务中有六项表现更优[^1]。 - **MPT-7B** 则是一个较小但高效的模型,适用于资源受限环境下的部署。为了进一步提升其性能,可以通过微调基础模型来适配特定任务的需求[^3]。 #### 二、MPT-3 应用实例 MPT-3 系列模型广泛应用于文本生成、对话系统开发以及其他 NLP 领域的任务中。以下是一些典型的应用案例: ##### 1. 故事创作工具——MPT-7B-StoryWriter 针对创意写作需求设计的专用版 MPT-7B-StoryWriter 可以帮助用户自动生成连贯且吸引人的故事内容。通过对硬件配置和参数的有效调节,并结合先进的算法优化手段如剪枝与量化技术,可以大幅提高此模型的工作效率[^2]。 ##### 2. 推理能力展示——MPT-30B 推理实践 对于需要高度逻辑思维支持的应用场合来说,MPT-30B 提供了一个良好的解决方案。它不仅具备优秀的泛化能力,而且还能灵活应对各种复杂的推理挑战。实际操作过程中应依据具体情况调整相关设置以获得理想效果[^4]。 #### 三、总结 综上所述,无论是追求极致性能还是注重成本效益平衡的选择下,MPT-3 家族都能满足不同层次用户的多样化需求。从科学研究到商业产品转化等多个维度展现了卓越的价值潜力。 ```python # 示例代码:加载预训练好的MPT-30B模型并执行简单推断任务 from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("mosaicml/mpt-30b") model = AutoModelForCausalLM.from_pretrained("mosaicml/mpt-30b") input_text = "Once upon a time" inputs = tokenizer(input_text, return_tensors="pt").to(model.device) outputs = model.generate(**inputs, max_new_tokens=50) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ```
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值