有限元分析中,怎么理解节点自由度?为什么空间实体单元节点自由度只有三个平动的,空间梁单元节点有6个自由度?
首先看下这个文章,有限元编程之杆单元,因为杆单元算是最简单的了。首先杆单元一个节点只有一个自由度(因为杆结构只有轴向变形),因此二节点的一阶单元有两个自由度,这里单元的位移插值函数(试函数)为:
可以注意到这里单元的位移插值函数有两个未知数。也就是说单元的位移插值函数未知数的个数等于单元总节点自由度的个数。
我们知道唯一的确定空间一点需要知道三个坐标值即可,你也可以说是三个自由度。因此在有限元中如果我们仅仅考虑节点三个方向的位移自由度Ux ,Uy, Uz, 然后求出它们,即可确定每个节点变形后的位置。无论是杆单元、梁单元、实体单元都是可以的。但是为什么我们有些时候不统一这样做呢?注意看下图:尽管位移是连续的,但是节点与节点之间不光滑。而且应力应变的结果更糟糕。
2个单元的情况
▲ 位移插值函数
▲ 位移的有限元结果与理论解
▲应力的有限元结果与理论解
5个单元的情况
▲ 位移插值函数
▲ 位移的有限元结果与理论解
▲应力的有限元结果与理论解
至于为什么会这样呢,
首先最根本的原因在于我们求的是有限元试函数,真的就像名字一样,试试而已,试出来的。这个函数不是唯一的,可以自己选择的,如果这个函数不好,可以换其他的。这个过程是个求插值多项式的过程和曲线拟合是类似的,本质上都是根据已知离散点求近似函数的过程
其次,就算你用近似函数吧,但是近似的程度不够。例如同一个点处位移值或者函数值相等就足够了吗?这一点的导数值,1阶、2阶......n阶呢,难道不应该也是一样吗? 就算无法满足这么高阶导数满足,那2阶行吗? 答案是都行。
最后,位移插值(试)函数近似程度高了,例如用3阶、4阶、5阶满足真的好吗?答案是否定的,因为会导致过拟合。对于过拟合产生原因的一个解释是离散点数据太少了,距离离散点较远处的信息随着位移插值(试)函数阶次的提高,越来越难被插值点控制。因此只能适当提高位移插值(试)函数阶次。
好了现在回归正题
1. 有限元分析中,怎么理解节点自由度?
答:描述这个节点位移及其各阶导数的量。(本文不考虑温度等自由度啊,如果非更全面的描述的话,就是描述这个节点处物理场及其各阶导数的量)
2. 为什么空间实体单元节点自由度只有三个平动的,空间梁单元节点有6个自由度?
答:实际上三个自由度也都行的,只不过相同单元尺寸下,精确度会降低。注意这里加了限定条件相同单元尺寸,也就是说即使单元自由度少,只要减小单元尺寸,也可以提高精度。减小单元尺寸本质上是用更多的分段插值多项式逼近真实函数,一般理论上来说可以收敛于真实函数。空间梁单元的6个自由度就是位移插值函数的1阶导数信息被提供作为自由度。
( 交流学习欢迎大家关注公众号冬生亦东生)