有限元中单元节点和积分点的区别

学过数值积分的应该知道,有限元中的积分点指高斯积分点,因为这些点的收敛性好,精度高。

1. 节点
    在单元内,采用形函数来表述单元内变量的分布规律。而节点值是在节点处的对应物理量。
以简单矩形单元的温度为例:四个节点i,j,m,n的温度分别为Ti,Tj,Tm,Tn.
则以单元内自然坐标(x,y),(-1,-1),(-1,1),(1,-1),(1,1)分别为四个节点,单元内温度分布为:

T={Si, Sj, Sm, Sn} {Ti, Tj, Tm, Tn}
其中,Si=1/4(1-x)(1-y),Sj=1/4(1+x)(1-y)] ,Sm=1/4(1+x)(1+y),Sn=1/4(1-x)(1+y)

(单元的形函数我们可以从手册中查到)
从而我们知道了温度在单元内的分布。
2. 积分点
    我们需要对温度在单元内的面积上进行积分时,因为节点的温度显然与x,y无关,我们只需要考虑对形函数积分。采用Gauss_Legendre多项式计算积分时,我们只需要计算根据特定积分点的值(在自然坐标系下是固定的,可以查手册,这些点也叫高斯点、积分点)并加以权重就可以。这就把复杂的积分问题变成了简单的代数问题。因为形函数只与单元有关,所以积分点也只与单元形状有关。
    应力一般采用多个积分点的相互插值或外延来计算节点应力。这只是为了减少误差。因为在积分点应力比节点具有更高阶的误差。
    从理论上说,形函数已知后,用Maple或者Mathematic等软件进行符号积分的话,是可以精确计算出刚度矩阵和质量矩阵,但是这样做的话,对于工程实际应用来说并不合适。
原因:1,费时;2,Mindlin中厚板有剪力锁死问题,有时候需要采用缩聚积分),所以有些书上会把2节点梁单元的刚度阵直接写出来,但是再复杂点的单元,就使用数值积分(Newton-Cotes积分和高斯积分)
牛顿-科斯的积分点就是节点,这样得到的质量矩阵是集中质量阵形式

 

个人理解:

1.节点作用:构造形函数,节点的多少描述规则形状单元内的应力的近似分布情况,并获取节点上的位移值

2.积分点作用:构造规则形状单元与曲边(曲面)单元的转化的变换函数,积分点的选取多少和选取的位置直接关系到这种“映射”的精确程度,刚度矩阵、边界条件的转化都用到了坐标变换的积分关系,一般取高斯积分点能使被积函数计算精度尽量高。对于newton-cote积分点的选取,这种“映射”看起来,节点和积分点是同一个位置或说是同一点,而对于高斯积分点位置与节点是不同的。

故有如下结果:

 1.由于高斯积分点的这种变换比较高,在方程求解结束,返回积分点上的应力解比较准确。
 2.至于Mindlin中厚板有剪力锁死问题,采用缩聚积分,也是应为这种坐标的变换关系(可见《有限单元法基本原理和数值方法p345页10.4.11式可知),力的边界条件只有剪切,采用缩聚积分可以较大降低剪切力的影响,但是也可能引起刚度矩阵的奇异,所以对于中厚板的积分点选取不同一般的方案。

1.ANSYS手册(Chapter 13)上列出各种单元积分点位置。
2.王瑁成的《有限单元法》第五章,有解释为什么积分点应力更加精确。

3.因为积分点应力更精确,所以我们一般采用积分点的应力内插或外延确定节点应力。特殊情况除外。

 

单元节点和积分点是不同的两个概念!
积分点是在进行函数积分的时候,为了增加精度,选取的积分点,也就是高斯积分
单元节点是你选取单元的时候就已经定下的点。

一定有单元节点,但不一定有积分点

 

    在网格划分完了所有的节点就都给定了,就是你网格中的每个点,他是有限元模型中“真实存在”的点。但是高斯点纯粹是因为高斯积分这种积分方式引入的。数值分析告诉我们,数值积分有很多方法,比如辛普森积分,高斯积分等,比如说,如果你采用辛普森积分就不存在高斯点这个概念,只有当你采用高斯积分才会有高斯点,不过有限元大多都采用高斯积分。;看过高斯积分就知道高斯点是怎么一回事了。
有限元求解的结果是每个节点的位移,然后通过形函数插值得到单元任何一个点的位移,当然可以计算出高斯积分点的位移。至于应力,一般是先求解出高斯点出的应力,然后通过平均化的技术平均到每个节点上,高斯点处的应力精度最高,节点最差。

    沙漏现象由于积分点过少造成单元变形过大,剪力自锁由于没有中节点,单元边界无法弯曲,造成单元变形过小。二者是相对立的两个现象,都属于有限元方法自身上的缺陷。 剪切闭锁现象一般发生在出现弯曲变形的线性完全积分单元中(例如CPS4、CPE4、C3D8)。线性单元的直边不能承受弯曲载荷作用,分析过程中可能出现本来不存在的虚假剪应变,使单元的弯曲刚度过大,计算的位移值偏小,即单元的位移场不能模拟由于弯曲而引起的剪切变形和弯曲变形,这就是所谓的“剪切闭锁”现象。当单元长度与厚度的数量级相同或长度大于厚度时,此现象会更严重。如果怀疑模型中出现了剪切闭锁现象,可以考虑采用非协调单元或者缩减积分单元。如果模型中网格扭曲非常厉害,仅仅改变单元类型往往不会使计算结果得到很大的改进,划分网格时尽可能保证单元形状是规则的。

<think>好的,我现在需要处理用户关于Abaqus中点估计方法的使用教程的查询。首先,我需要明确用户所说的“点估计”具体指的是什么。点估计在统计学中通常指用样本数据估计总体参数,但在有限元分析软件如Abaqus中,可能涉及不同的概念,比如积分点的选择、应力应变在积分点的计算,或者是参数化建模中的点选操作。 根据用户提供的引用,引用[2]提到了脚本在参数化建模中的应用,尤其是在处理多因素多水平实验时,使用脚本可以避免手动操作。这可能与用户提到的“点估计”有关联,特别是如果用户在进行参数化分析时需要批量设置不同的参数值(如压下量),这时候通过脚本自动处理积分点或采样点的数据会更高效。 另外,引用[3]提到了数值积分方法,如高斯积分Newton-Cotes积分,这些方法在有限元分析中用于计算单元刚度矩阵结果(如应力、应变)在积分点处的值。Abaqus默认使用高斯积分法,积分点的数量位置会影响计算精度效率。用户可能想了解如何查看或修改这些积分点设置,或者如何提取积分点处的数据进行分析。 接下来,我需要结合Abaqus的文档用户提供的引用来构建回答。首先,解释点估计在Abaqus中的可能应用场景,比如积分点的重要性,然后分步骤说明操作方法,包括通过界面操作脚本自动化。同时,需要引用相关的引用内容来支持回答,例如引用[2]关于脚本的使用,引用[3]关于积分方法。 可能的步骤包括: 1. 积分点的查看设置:在Abaqus/CAE中,用户可以通过单元类型的选择来影响积分点的数量,例如选择减缩积分单元还是完全积分单元。输出请求中可以设置输出积分点处的数据。 2. 数据提取后处理:在可视化模块中,如何切换显示积分点的数据而非节点平均的数据。 3. 脚本自动化:使用Python脚本批量设置参数、提交作业、提取积分点数据,引用[2]中的例子说明脚本在处理多参数时的优势。 4. 参数化分析:结合点估计方法进行参数研究,可能需要结合试验设计(DOE)或优化算法,这里可以提到数值积分方法(引用[3])对结果精度的影响。 需要确保回答中使用正确的LaTeX格式,例如在提到高斯积分时使用$$...$$,如高斯积分公式。同时,生成的相关问题需要围绕Abaqus中的积分点、脚本使用、参数化分析等展开。 最后,检查是否有遗漏的信息,并确保引用标注正确,例如引用[2][3]分别在脚本数值积分方法的部分提及。</think>### Abaqus点估计方法使用说明 在有限元分析中,“点估计”通常涉及**积分点数据计算****参数化采样分析**。Abaqus中相关操作主要包括以下两类场景: --- #### 一、积分点数据计算 有限元结果(如应力、应变)默认在积分点计算,再外推至节点。操作步骤如下: 1. **设置单元积分方式** 在定义材料属性单元类型时,选择**减缩积分**(如C3D8R)或**完全积分**单元(如C3D8),影响积分点数量。例如,六面体完全积分单元每个方向有2个高斯点,总数为$2^3=8$[^3]。 2. **输出积分点数据** 在Step模块的场输出请求中,勾选**积分点数据**(如`S`、`E`),确保结果文件包含原始积分点值。 3. **后处理查看积分点结果** 进入Visualization模块后: ```python # 切换为积分点显示(非节点平均) session.viewports['Viewport: 1'].odbDisplay.setPrimaryVariable( variableLabel='S', outputPosition=INTEGRATION_POINT # 关键参数 ) ``` --- #### 二、参数化点估计分析 针对多参数组合的批量分析(如引用[2]中提到的“100组压下量”),推荐使用Python脚本自动化: ```python from abaqus import * from abaqusConstants import * # 定义参数化变量 压下量列表 = [10, 20, 30] # 示例参数 for 压下量 in 压下量列表: mdb.Model(name=f'Model-{压下量}mm') # 创建几何、网格、边界条件... myJob = mdb.Job(name=f'Job-{压下量}mm', model=f'Model-{压下量}mm') myJob.submit() myJob.waitForCompletion() # 提取积分点数据 odb = openOdb(path=f'Job-{压下量}mm.odb') frame = odb.steps['Step-1'].frames[-1] stress = frame.fieldOutputs['S'].values[0].data # 首个积分点应力 print(f"压下量{压下量}mm时应力:{stress}") ``` **优势**:避免手动重复操作,支持复杂实验设计(如正交试验)[^2]。 --- #### 三、数值积分方法选择 Abaqus默认使用高斯积分法,其积分点权重$w_i$位置$x_i$由多项式精度决定: $$ \int_{-1}^{1} f(x)dx \approx \sum_{i=1}^n w_i f(x_i) $$ 例如,2点高斯积分的权重为$w_1=w_2=1$,位置$x_1=-1/\sqrt{3}$, $x_2=1/\sqrt{3}$。 ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值