电子科技大学《组合数学与应用》

专注技术,少走弯路

——原创作者:青年有志

🎉 博主相信: 有足够的积累,并且一直在路上,就有无限的可能!!!

👨‍🎓个人主页: 青年有志的博客

💯 文章内容说明:内容来源于卢光辉等老师出版的《组合数学与应用》,其中有本人对部分内容的理解分析,以及历年试卷


第一章 排列、组合与二项式定理

1.1 四个基本的计数准则

1. 加法规则

设 S 是有限集合,若 S i ⊆ S S_i \subseteq S SiS且, S = ⋃ i = 1 m S i S = \bigcup_{i=1}^m S_i S=i=1mSi,且 i ≠ j i \neq j i=j 时, S i ∩ S j = ∅ S_i \cap S_j = \empty SiSj=,则有: ∣ S ∣ = ∣ ⋃ i = 1 m S i ∣ = ∑ i = 1 m ∣ S i ∣ |S| = |\bigcup_{i=1}^m S_i| = \sum_{i=1}^m |S_i| S=i=1mSi=i=1mSi

特别:当 m = 2 m = 2 m=2 时,有: ∣ S ∣ = ∣ S 1 ∪ S 2 ∣ = ∣ S 1 ∣ + ∣ S 2 ∣ |S| = |S_1 \cup S_2| = |S_1| + |S_2| S=S1S2=S1+S2

换言之,加法规则可以叙述为:若集合S可以分解为互不相交子集 S 1 , S , . , S m S_1,S,.,S_m S1,S,.Sm 之和,则确定 S S S 中的事物个数为:1.先求出各子集 S i S_i Si 中的事物个数;2. 然后相加。

当 m = 2 时,假若有互相独立的两个事件 X 和 Y 分别有 k 种和 l 种方法产生,则产生 X 和 Y 的方法数有 k+l种。

2. 乘法规则

S i ( i = 1 , 2 , 3 , . . . , m ) 为有限集,且 S = S 1 × S 2 × . . . × S m = { ( a 1 , a 2 , . . . , a m ) ∣ a i ∈ S i , i = 1 , 2 , . . . , m } , S_i(i = 1, 2, 3, ..., m) 为有限集,且 S = S_1 × S_2 × ... × S_m = \{(a_1, a_2, ..., a_m) |a_i \in S_i, i = 1, 2, ..., m\}, Si(i=1,2,3,...,m)为有限集,且S=S1×S2×...×Sm={(a1,a2,...,am)aiSi,i=1,2,...,m}, 则有 ∣ S ∣ = ∣ S 1 × S 2 × . . . × S m ∣ = ∏ i = 1 m ∣ S i ∣ |S| = |S_1 × S_2 × ... × S_m| = \prod^m_{i=1} |S_i| S=S1×S2×...×Sm=i=1mSi,特别,当 m = 2 时,有 ∣ S ∣ = ∣ S 1 × S 2 ∣ = ∣ S 1 ∣ ⋅ ∣ S 2 ∣ |S| = |S_1 × S_2| = |S_1| · |S_2| S=S1×S2=S1S2

注意:对于S中的元 ( a 1 , a 2 , . . . , a m ) (a_1, a_2, ..., a_m) (a1,a2,...,am) ,它的各分量是相互独立的。

当 m = 2 时,假若有互相独立的两个事件 X 和 Y 分别有 k 种和 l 种方法产生,则同时产生事件 X 和 事件 Y 的方法数有 k × l 种。

  • 这个是乘法原理和加法原理:从 A 到 B 到 C 到 D,2 × 4 × 3 = 24
  • 由题意知本题需要分步计数,2和4排在末位时,其余三位数从余下的四个数中任取三个有 A 4 3 A_4^3 A43 =4×3×2=24 种排法,得到符合题意的偶数共有 2×24=48(个).
    1. 8 ;2. 16

集合与重集

  • 集合:A= {a, b, c, d}
  • 重集:集合中的元素可以重复。
    如重集 B = {a,a,b,b,b,c,d,d,d,d,d} 则有 11 个元素,2 个 a,3 个 b,1 个 c 和 5 个 d。
    B 简记为 B = {2·a ,3·b,1.c, 5·d} 。
  • 重集的一般形式为: B = { k 1 ⋅ b 1 , k 2 ⋅ b 2 , . . . . , k n ⋅ b n } B=\{k_1 · b_1, k_2 · b_2, ...., k_n · b_n\} B={k1b1,k2b2,....,knbn}

由上可知,大量的计数问题可分为两大类:

1.2 集合的排列

排列分为:线排列、圆排列、重排列

1. 线排列

  • 线排列是把一些元素排成一条直线, A = { a 1 , a 2 , . . , a n } A= \{a_1, a_2 ,..,a_n\} A={a1,a2,..,an}
  • r 是正整数,从这 n 个不同的元素中取 r 个按照一定的次序排列起来 (r ≤ \leq n),称为集合 A 的 r − r^- r 排列。
  • 集合 A 的所有 r − r^- r 排列的个数记为 P(n,r)。(定义1-1)
  • 注意:A 的 r − r^- r 排列为 A 的 r 有序子集。
    • 例:集合 A= {a,b,c}
    • 集合 A 有 6 个 2 − 2^- 2 排列:ab, ac, ba, ca, bc, cb 即 P(3, 2)=6
    • A 有 6 个 3 − 3^- 3 排列:abc, acb, bac, bca, cab, cba,即 P(3, 3)=6

定理 1.1 对于正整数 n, r, r≤n,有 P(n,r) = n(n-1)…(n-r+1) = n ! ( n − r ) ! \frac{n!}{(n-r)!} (nr)!n!

推论 1 当 n ≥ \geq r ≥ \geq 2 时,有: P ( n , r ) = n P ( n − 1 , r − 1 ) P(n, r) = n P(n-1, r - 1) P(n,r)=nP(n1,r1)

推论 2 当 n ≥ \geq r ≥ \geq 2 时,有: P ( n , r ) = r P ( n − 1 , r − 1 ) + P ( n − 1 , r ) P(n, r) = rP(n-1, r - 1) + P(n - 1, r) P(n,r)=rP(n1,r1)+P(n1,r) 解释:考虑第一个数放入 r 个位置中的任意一个位置,则有 r P ( n − 1 , r − 1 ) rP(n-1, r - 1) rP(n1,r1),考虑当前数字不放入则有 P ( n − 1 , r ) P(n - 1, r) P(n1,r)

  • ABD,将 A 与 R 作为一个整体捆绑,剩下 8 个字母排列 P(8,8),D 答案中的 P(9, 9) - 8*P(8,8) = 8!

2. 圆排列

n n n 个东西中选取 r r r 个,使这 r r r 个东西排成一个圆圈,这样的排列方案叫做圆排列。圆圈的意思在于,圆圈是不分首尾的,相对位置相同的就算同一种方案。

定义 1.2 从集合 A = { a 1 , a 2 , … , a n } A= \{a_1, a_2,…, a_n\} A={a1,a2,,an} 的 n 个不同元素中取出 r 个元素按照某种顺序(如逆时针)排成一个圆圈,称这样的排列为圆排列(或称循环排列)。

注意: 把一个圆排列旋转所得到的另一个圆排列视为相同的圆排列。即排列:

  • a 1 , a 2 , … , a r a_1, a_2,…, a_r a1,a2,,ar
  • a 2 , a 3 , … , a r , a 1 a_2, a_3,…, a_r, a_1 a2,a3,,ar,a1
  • a 3 , … , a r , a 1 , a 2 a_3,…, a_r, a_1, a_2 a3,,ar,a1,a2
  • a r , a 1 , a 2 , … a r − 1 a_r, a_1, a_2, … a_{r-1} ar,a1,a2,ar1 在圆排列中是同一个
  • 所以圆排列的个数为: P ( n , r ) / r = n ! / ( r ( n − r ) ! ) P(n,r)/r = n! / (r(n - r)!) P(n,r)/r=n!/(r(nr)!)

举个例子,从 4 个东西 { A , B , C , D } \{A, B, C, D\} {A,B,C,D} 选取 3 个排成圆圈,有如下 8 种方案:
( A , B , C ) , ( A , C , B ) , ( A , B , D ) , ( A , D , B ) (A, B, C), (A, C, B), (A, B, D), (A, D, B) (A,B,C),(A,C,B),(A,B,D),(A,D,B)
( A , C , D ) , ( A , D , C ) , ( B , C , D ) , ( B , D , C ) (A, C, D), (A, D, C), (B, C, D), (B, D, C) (A,C,D),(A,D,C),(B,C,D),(B,D,C)

注意到 (A, B, C) 与 (B, C, A) 是 同一种方案,因为当排成一个圆圈时, A 的下一个都是 B, B 的下一个都是 C, C 的下一个都是 A,相对位置一样。

对于一个排列1 、 2 、 3 、 4 来说,由于排列的数围成了一个圆,所以将其旋转一次,使得 4 在最上方,在我们日常生活中看来,这显然属于一种排列,无非是不同的方向看过去罢了。同样的,3 、2 在上方也是如此。

对于一个 r 个数的排列来说,可以旋转 r 次,每个排列都是 r 次重复。所以要除以 r。

在这里插入图片描述

3. 重排列

上面我们讨论了从集合A(A中的元素是互不相同的)中选r个元素进行排列,在每种排列中每个元素至多只出现一次的情况。

现在考虑元素允许重复出现的情况,即考虑在重集 B = { k 1 ⋅ a 1 , k 2 ⋅ a 2 , … , k n ⋅ a n } B= \{k_1· a_1, k_2 ·a_2,…, k_n · a_n\} B={k1a1,k2a2,,knan}中选 r r r 个元素进行的排列。

定义 1-3 从重集 B = { k 1 ⋅ a 1 , k 2 ⋅ a 2 , … , k n ⋅ a n } B= \{k_1· a_1, k_2 ·a_2,…, k_n · a_n\} B={k1a1,k2a2,,knan}中选 r r r 个元素按照一定的顺序排列起来,成这种 r − r^- r 排列为重排列。

定理 1-3 重集 B = { ∞ ⋅ b 1 , ∞ ⋅ b 2 , … , ∞ ⋅ b n } B =\{ \infty · b_1, \infty · b_2,…, \infty · b_n\} B={b1,b2,,bn} 的 r 排列的个数为 n r n^r nr

证明:选择 r − r^- r排列的第一项, 可以从 n 个元素中任选一个, 有 n 种选法,第二项 , 由于可以重复选取 , 仍有 n 种选法, …, 由乘法规则可求得 r 排列的数目为 n r n^r nr

  • AD,
    • A 答案的情况:第一位数大于 3 的情况:3 * 6^4 + 第一位数为 3,第二位数大于4的情况 2 * 6^3 + 第二位为 4 ,第三位大于 5 的情况 6^2,+ 第三位为5,后面 6^2
    • B 答案的情况:选择所有小于 34500 的五位数。

定理 1-4 重集 B = { n 1 ⋅ b 1 , n 2 ⋅ b 2 , . . . , n k ⋅ b k } B = \{n_1 · b_1, n_2 · b_2, ..., n_k · b_k\} B={n1b1,n2b2,...,nkbk} 的全排列个数为: n ! n 1 ! ⋅ n 2 ! . . . n k ! \frac{n!}{n_1! · n_2!... n_k!} n1!n2!...nk!n!

证明:

  • 将 B 中的 n i n_i ni b i b_i bi 分别赋予上标 1 , 2 , . . . , n i 1, 2, ..., n_i 1,2,...,ni,即 b i 1 , b i 2 , . . . , b i n i b^1_i, b_i^2, ..., b_i^{n_i} bi1,bi2,...,bini (i = 1, 2, …, k)
  • B = A = { b 1 1 , b 1 2 , . . . , b 1 n 1 , . . . , b k 1 , b k 2 , . . . , b k n k } B = A = \{b^1_1, b_1^2, ..., b_1^{n_1}, ..., b^1_k, b_k^2, ..., b_k^{n_k}\} B=A={b11,b12,...,b1n1,...,bk1,bk2,...,bknk}。 A 中元素个数为 n = n 1 + n 2 + . . . + n k n = n1 + n2 + ... + nk n=n1+n2+...+nk
  • 显然,集合 A 的全排列个数为 n!
  • 又由于 n i n_i ni b i b_i bi 赋予上标 1, 2, …, n i n_i ni 的办法有 n i ! n_i! ni!
  • 对于重集 B 的任一个全排列,都可以产生集合 A 的 n 1 ! n 2 ! . . . n k ! n_1!n_2!...n_k! n1!n2!...nk! 个排列(由乘法规则)
  • 估重集 B 的全排列个数为 n ! n 1 ! ⋅ n 2 ! . . . n k ! \frac{n!}{n_1! · n_2!... n_k!} n1!n2!...nk!n!,证毕!
  • AB

1.3 组合

定义1.4 设 A = { a 1 , a 2 , . … . , a n } A= \{a_1, a_2, .…., a_n\} A={a1,a2,..,an} 是具有 n 个元素的集合,r 是非负整数。从这 n 个不同的元素里取 r 个不考虑次序组合起来 (r ≤ \leq n),称为集合 A 的 r 组合 (r子集)。记为 C(n, r) 换句话说,A 的 r − r^- r 组合是 A 的 r − r^- r 无序子集。

定理 1.5 对于 r ≤ \leq n ,有 C ( n , r ) = P ( n , r ) / r ! = n ! / r ! ( n − r ) ! C(n, r) = P(n, r)/r! = n! / r!(n - r)! C(n,r)=P(n,r)/r!=n!/r!(nr)! (内部无序,所以除以 r ! r! r!)

推论 1 C(n, r) = C(n, n - r) (n 个里面选 r 个组合与 n 个里面,留下 r 个的其余 n - r 个进行组合相同)

推论 2 (Pascal 公式) C(n, r) = C(n - 1, r) + C(n - 1, r - 1) (考虑当前数选出来组合,无位置顺序,所以为 C(n - 1, r - 1),不选出来组合为 C(n - 1, r))

  • a:模3余1有334个:1、4、7、10…
  • b:模3余2有333个:2、5、8、11…
  • c:模3余0有333个:3、6、9、12…
  • 第一种情况:从余数为 1 的 a 中选取一个,并且从余数为 2 的 b 中选取一个数,两个数相加一定可以整除 3,再从 c 中选取 1 个数,即组成三个整数之和,即 C(334, 1) * C(333, 1) * C(333, 1)
  • 第二种情况:从余数为 0 的集合 c 中选取三个数,C(333, 3)
  • 最终结果:C(334, 1) * C(333, 1) * C(333, 1) + C(333, 3)

这里不懂???

1. 重复组合(两种z)

定义 1.5 从重集 B = { k 1 ⋅ b 1 , k 2 ⋅ b 2 , … , k n ⋅ b n } B= \{k_1· b_1, k_2 ·b_2,…, k_n · b_n\} B={k1b1,k2b2,,knbn}中选 r r r 个元素不考虑次序组合起来,称为从 B 中取 r 个元素的重复组合

定理 1.6 = B = { ∞ ⋅ b 1 , ∞ ⋅ b 2 , … , ∞ ⋅ b n } B =\{ \infty · b_1, \infty · b_2,…, \infty · b_n\} B={b1,b2,,bn} 的 r 组合数为:F(n, r) = C(n + r - 1, r)

相当于假设 n 个元素为 b 1 = 1 , b 2 = 2 , b 3 = 3..... b_1 = 1, b_2 = 2, b_3 = 3 ..... b1=1,b2=2,b3=3....., 选出的组合为 { c 1 , c 2 , . . . c r } \{c_1, c_2, ... c_r\} {c1,c2,...cr}, 正常可知, c c c 集合中可能存在重复的元素,比如选出了 { 2 , 2 , 3 , 3 , 4 } \{2, 2, 3, 3, 4\} {2,2,3,3,4}, 于是假设 d i = c i + i − 1 , d 1 = c 1 , d 2 = c 2 + 1 , d 3 = c 3 + 2 , d 4 = c 4 + 3 d_i = c_i + i - 1, d_1 = c_1, d_2 = c_2 + 1, d_3 = c_3 + 2, d_4 = c_4 + 3 di=ci+i1,d1=c1,d2=c2+1,d3=c3+2,d4=c4+3,这样就可以保证每个元素都不重复啦,然后最大只能取到 n + r − 1 n + r - 1 n+r1。就将 n 个数里面可重复的取 r 个,变为了 n + r - 1 个不重复的数选 r 个

在这里插入图片描述

这里是重集的排列, 重复的 r 个 1 和 重复的 k-1 个 0,用重集的排列公式

在这里插入图片描述

  • 注: 实际上 T = {r · 1, (k - 1) · *} 可以表示有 r 个 1 ,用 (k-1) 个 0 将其分组,总共有 C(r + k - 1, r) 个分组方式,即有 r + k -1 个位置,放 r 个 1 的组合方法数,也即等于 C(r + k - 1, k - 1), 即 有 r + k -1 个位置,放 k - 1 个 0 的组合方法数。
  • A
  • D,满足无一空盒,即 r 个有标志的盒子均放入 1 个球,还剩下 n - r 个球,r 个盒子是无限的随便放多少个,选出 n - r 个盒子为,即共有 F(r, n - r) 中组合方式
  • A

1.4 二项式定理

  • 表示提取 0 个x,提取 1 个x ,提取 2 个 x,… 的方案数
  • 表示对于所有 x 的提取情况之和

在这里插入图片描述


在这里插入图片描述


  • 比如:(2/3, k), (-5, k), (a, k)

在这里插入图片描述


在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

  • 推论 2 证明: ( − n , k ) = ( − n ) × ( − n − 1 ) × . . . ( − n − k + 1 ) k ! = ( − 1 ) k ⋅ n × ( n + 1 ) × . . . × ( n + k − 1 ) × ( n − 1 ) ! k ! ( n − 1 ) ! = ( − 1 ) k F ( n , k ) = ( − 1 ) k ( n + k − 1 , k ) (-n, k) = \frac{(-n) × (-n - 1) × ... (-n - k + 1)} {k! } = (-1)^k ·\frac{ n×(n+1)×... ×(n + k - 1) × (n-1)!} {k! (n -1)!} = (-1)^k F(n, k) = (-1)^k(n+k-1, k) (n,k)=k!(n)×(n1)×...(nk+1)=(1)kk!(n1)!n×(n+1)×...×(n+k1)×(n1)!=(1)kF(n,k)=(1)k(n+k1,k)

在这里插入图片描述


在这里插入图片描述

  • 推论 6 证明: ( 1 / 2 , k ) = 1 / 2 × ( 1 / 2 − 1 ) × . . . × ( 1 / 2 − k + 1 ) k ! = ( 1 / 2 ) k ⋅ ( − 1 ) × ( − 3 ) × . . . × ( − 2 k + 3 ) k ! = ( 1 / 2 ) k ( − 1 ) k − 1 ⋅ 1 × 3 × . . . × ( 2 k − 3 ) × 2 × 4 × . . . × ( 2 k − 2 ) k ! × 2 × 4 × . . . × ( 2 k − 2 ) = ( 1 / 2 ) k ( − 1 ) k − 1 ⋅ ( 2 k − 2 ) ! k ! × 2 2 k − 1 = ( − 1 ) k − 1 k × 2 2 k − 1 ⋅ ( 2 k − 2 ) ! 2 k ( k − 1 ) ! = ( − 1 ) k − 1 k × 2 2 k − 1 ⋅ ( 2 k − 2 , k − 1 ) (1/2, k) = \frac{1/2 × (1/2 - 1) × ... × (1/2 -k + 1)}{k!} = (1/2)^k · \frac{(-1) × (-3) × ... × (-2k + 3)}{k!} = (1/2)^k (-1)^{k-1} · \frac{1 × 3 × ... × (2k-3) × 2 × 4 × ... × (2k-2)}{k! × 2 × 4 × ... × (2k-2)} = (1/2)^k (-1)^{k-1} · \frac{(2k-2)!}{k! × 2^{2k-1}} = \frac{ (-1)^{k-1}}{ k × 2^{2k-1}} · \frac{(2k-2)!}{2^k(k-1)! } = \frac{ (-1)^{k-1}}{ k × 2^{2k-1}} ·(2k-2, k-1) (1/2,k)=k!1/2×(1/21)×...×(1/2k+1)=(1/2)kk!(1)×(3)×...×(2k+3)=(1/2)k(1)k1k!×2×4×...×(2k2)1×3×...×(2k3)×2×4×...×(2k2)=(1/2)k(1)k1k!×22k1(2k2)!=k×22k1(1)k12k(k1)!(2k2)!=k×22k1(1)k1(2k2,k1)

1.5 组合恒等式

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

第一章习题

在这里插入图片描述


在这里插入图片描述


在这里插入图片描述


在这里插入图片描述


在这里插入图片描述
在这里插入图片描述


在这里插入图片描述


在这里插入图片描述
在这里插入图片描述


在这里插入图片描述


在这里插入图片描述


在这里插入图片描述


在这里插入图片描述


在这里插入图片描述

在这里插入图片描述


在这里插入图片描述
在这里插入图片描述


在这里插入图片描述
在这里插入图片描述


在这里插入图片描述

第二章 容斥原理

2.1 容斥原理

在这里插入图片描述
在这里插入图片描述

推论 1

在这里插入图片描述


在这里插入图片描述


在这里插入图片描述
在这里插入图片描述


  • C,能被 7 整除的数为 |S| = 2000 / 7 = 285. A1 为能被 6 整除,A2为能被 10 整除,所以 | A 1 ˉ \bar{A1} A1ˉ + A 2 ˉ \bar{A2} A2ˉ| = 285 - 285/6 - 285/10 + 285/30 =


在这里插入图片描述
在这里插入图片描述

  • 首先一个数可以分解为多个素数 p i p_i pi 相乘,找出小于 n 的数中的其他不能被 p i p_i pi 整除的数,也为素数

在这里插入图片描述

  • 先假设 a, b, c 不出现的集合

在这里插入图片描述
在这里插入图片描述

  • 问均不出现,就假设出现

在这里插入图片描述

  • 注意这里是 n 本不同的书放入 m 个有编号的箱子中,不同的书放入相同的箱子情况不同,如果是 n 本相同的书,则是重集的组合问题,箱子里面放的只在意本书,不在意是那本。

2.2 重集的 r 组合

在这里插入图片描述
在这里插入图片描述
之前重集的 r 组合是每个元素都有无穷个,本章节是又穷个


在这里插入图片描述
在这里插入图片描述

2.3 错排问题

在这里插入图片描述
在这里插入图片描述

  • 即:全排列 |S| = n!, 有一个人没有错排为 C(n, 1) (n-1)!, 有两个人没有错排为 C(n, 2) (n-2)!

定理 2.3 重要的

在这里插入图片描述

  • 相当于考虑错排的两种情况: 1. 当前位置比如 1 1 1 位置肯定错排,放 a k a_k ak,考虑原本应该放 a k a_k ak k k k 位置,只有两种情况,要么两个数交叉放, k k k 位置放 a 1 a_1 a1,要么放其他数,如果放 a 1 a_1 a1,其他数错排为 D n − 2 D_{n-2} Dn2,选取 1 1 1 位置有 n - 1 种方法,所以为: ( n − 1 ) D n − 2 (n-1) D_{n-2} (n1)Dn2,第二种情况就是 a k a_k ak 不定,剩下 n − 1 n-1 n1 个数随意错排有 D n − 1 D_{n-1} Dn1 种,相同的情况有 n - 1 种,所有总和就是 D n = ( n − 1 ) ( D n − 1 + D n − 2 ) D_n = (n-1) (D_{n-1} + D_{n-2}) Dn=(n1)(Dn1+Dn2)

在这里插入图片描述


在这里插入图片描述



  • D 无需错排,用容斥原理

2.4 相对位置上有限制的排列问题

在这里插入图片描述
在这里插入图片描述

  • 线排列为 n!,当两个儿童位置不变时即 A i A_i Ai 为 C(n-1, 1) (n-1)! …

定理 2.5

在这里插入图片描述


在这里插入图片描述
在这里插入图片描述

  • 圆排列为 (n-1)!,当两个儿童位置不变时即 A i A_i Ai 为 (n-2)! …,因为是圆形,所以总共有 n 种两两组合,就是 C(n,1) (n-2)!

2.5 一般有限制的排列

在这里插入图片描述

  • r k r_k rk 为棋盘上放 k k k 个棋子的方案数

背下来

在这里插入图片描述


在这里插入图片描述
在这里插入图片描述


在这里插入图片描述
在这里插入图片描述

  • 注意: 独立的棋盘满足整行及整列不收影响

在这里插入图片描述


在这里插入图片描述
在这里插入图片描述


在这里插入图片描述
在这里插入图片描述


在这里插入图片描述


在这里插入图片描述


课后作业

在这里插入图片描述


在这里插入图片描述
在这里插入图片描述


在这里插入图片描述


在这里插入图片描述
在这里插入图片描述


在这里插入图片描述
在这里插入图片描述


在这里插入图片描述


在这里插入图片描述


在这里插入图片描述
在这里插入图片描述


在这里插入图片描述


在这里插入图片描述
在这里插入图片描述


在这里插入图片描述
在这里插入图片描述


在这里插入图片描述
在这里插入图片描述


在这里插入图片描述


在这里插入图片描述


在这里插入图片描述
在这里插入图片描述
在这里插入图片描述


在这里插入图片描述
在这里插入图片描述


在这里插入图片描述

第三章 母函数

1. 普通母函数

在这里插入图片描述


母函数的求解需要依赖于二项式定理各推论(背下来)

在这里插入图片描述


在这里插入图片描述


在这里插入图片描述


在这里插入图片描述


在这里插入图片描述


在这里插入图片描述


在这里插入图片描述


在这里插入图片描述


在这里插入图片描述


在这里插入图片描述


在这里插入图片描述
运用二项式定理中的公式解决


在这里插入图片描述

运用二项式定理中的公式解决


在这里插入图片描述

解释一下,为什么 i 要从 1 开始: 因为后续会使用除法,避免除零

在这里插入图片描述


在这里插入图片描述

两边同时微分多次即可


2. 指数母函数

在这里插入图片描述


在这里插入图片描述

这里其实是把 P(n, r) 转化为了 C(n, r) ,因为每项除了一个阶乘


在这里插入图片描述


在这里插入图片描述

这个记住,就是这种形式

在这里插入图片描述


例 8 第一行用到了广义二项式定理的推论 1
在这里插入图片描述
在这里插入图片描述

后续的 × 1 可以去掉,因此 n = 1,有一项,n = 2,有两项

还需注意原始这里的 n = 0,对应 1 项,n = 1,对应两项。。。

所以下面我自己写得是错的

在这里插入图片描述


在这里插入图片描述

分部积分法回顾


3. 母函数的基本运算

在这里插入图片描述


证明:(下述证明中,由于我们只需要第 n 项,而其他项我们不关心,因此只要所有和 n 次有关系的系数)
在这里插入图片描述


在这里插入图片描述
在这里插入图片描述
1 1 − x \frac{1}{1-x} 1x1 的序列全为 1,乘以 A(x) = A(x) 原始序列和

在这里插入图片描述


第一步: 拼凑得到序列的母函数
第二步: 根据题目的值,通过母函数去拼凑出来(此题不懂)

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述


在这里插入图片描述


**此题不懂**
在这里插入图片描述


在这里插入图片描述
在这里插入图片描述


4. 母函数在排列组合中的运用

普通母函数用于组合数,指数母函数用于排列数
在这里插入图片描述
在这里插入图片描述


1 1 − x = ∑ n = 0 ∞ x n \frac{1}{1-x} = \sum^{\infty}_{n=0}x^n 1x1=n=0xn

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述


在这里插入图片描述
在这里插入图片描述
在这里插入图片描述


在这里插入图片描述
令推论 5 中的 x = x 2 , r = 1 x = x^2, r = 1 x=x2,r=1
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述


在这里插入图片描述
在这里插入图片描述


在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述


在这里插入图片描述


在这里插入图片描述


在这里插入图片描述


在这里插入图片描述


在这里插入图片描述


在这里插入图片描述

5. 整数的拆分

无区别的球放入无区别的盒子,实际上就是整数划分
在这里插入图片描述
在这里插入图片描述
重点注意: ( 1 + x + x 2 + x 3 + . . . . ) (1 + x + x^2 + x^3 + ....) (1+x+x2+x3+....) 1 , x , x 2 , x 3 , . . . . 1 , x , x^2 , x^3 , .... 1,x,x2,x3,.... 分别表示数字1没有被选,或选一个1,或选两个1…, 同样地,因子 ( 1 + x 2 + x 4 + x 6 + . . . ) (1 + x^2 + x^4 + x^6 + ...) (1+x2+x4+x6+...) 则表示2没有被选,或选一个2,或选两个2…


在这里插入图片描述


在这里插入图片描述


在这里插入图片描述


在这里插入图片描述


在这里插入图片描述


在这里插入图片描述


如下表示每个数要么不出现,要么出现一次,即: ( 1 + x a ) (1 + x^a) (1+xa)
在这里插入图片描述


下述推论1中,需要满足拆分成不同的整数,所以是这种形式
推论 2 中,拆分成 2 的不同幂同理
在这里插入图片描述


在这里插入图片描述


每个数都可以唯一的由一个二进制数表示,所示方法数为 1
在这里插入图片描述

中间过程写错了,结论是对的


在这里插入图片描述
在这里插入图片描述


没整懂
在这里插入图片描述
在这里插入图片描述


在这里插入图片描述
在这里插入图片描述

图 3-3 说明,ferrers 图与它的共轭图的方案数一致


6. 母函数在组合恒等式中的应用

在这里插入图片描述
在这里插入图片描述


当p=n时,k-p = 0,整体结果为 1
在这里插入图片描述


等比数列求和公式: a 1 − a n q 1 − q \frac{a_1 - a_nq}{1-q} 1qa1anq,其中 q = 1 + x 2 , a 1 = 1 , a n = ( 1 + x 2 ) 2 n q = \frac{1+x}{2}, a_1 = 1, a_n = (\frac{1+x}{2})^{2n} q=21+x,a1=1,an=(21+x)2n
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述


等比数列求和公式: a 1 − a n q 1 − q \frac{a_1 - a_nq}{1-q} 1qa1anq,其中 q = ( 1 + x ) , a 1 = ( 1 + x ) n , a n = ( 1 + x ) n + m q = (1 + x),a_1 = (1+x)^n, a_n = (1+x)^{n+m} q=(1+x)a1=(1+x)n,an=(1+x)n+m
在这里插入图片描述


解析:
在这里插入图片描述
在这里插入图片描述


这里 x k x^k xk 的系数为 ∑ j = 0 n ( n + j , k ) \sum_{j=0}^n (n + j , k) j=0n(n+j,k)
在这里插入图片描述


在这里插入图片描述
在这里插入图片描述


在这里插入图片描述


在这里插入图片描述
在这里插入图片描述


在这里插入图片描述
在这里插入图片描述


只需看下面项的所有偶数部分,并总结偶数系数的规律。
在这里插入图片描述

课后作业

在这里插入图片描述


在这里插入图片描述


在这里插入图片描述


在这里插入图片描述
在这里插入图片描述


在这里插入图片描述


在这里插入图片描述


在这里插入图片描述


在这里插入图片描述
在这里插入图片描述


在这里插入图片描述


在这里插入图片描述


在这里插入图片描述
在这里插入图片描述


在这里插入图片描述
选 1 此表示 1,选 2 此表示 2,选 3 次表示 3,选 4 次表示 4,选 5 次表示 5


在这里插入图片描述
在这里插入图片描述


在这里插入图片描述
在这里插入图片描述


在这里插入图片描述


在这里插入图片描述
在这里插入图片描述
在这里插入图片描述


在这里插入图片描述
在这里插入图片描述


在这里插入图片描述

第四章 递归关系

在这里插入图片描述
在这里插入图片描述


在这里插入图片描述


在这里插入图片描述
在这里插入图片描述


在这里插入图片描述


在这里插入图片描述
在这里插入图片描述


4.2 常系数齐次递归关系

在这里插入图片描述

1. 无重复特征根

在这里插入图片描述


在这里插入图片描述


在这里插入图片描述
在这里插入图片描述
在这里插入图片描述


在这里插入图片描述


在这里插入图片描述
在这里插入图片描述

2. 有重复的特征根

在这里插入图片描述


在这里插入图片描述


在这里插入图片描述


在这里插入图片描述

在这里插入图片描述

在这里插入图片描述


在这里插入图片描述


在这里插入图片描述

4.3 常系数线性非齐次递归关系

在这里插入图片描述

1. f ( n ) f(n) f(n) n n n t t t 次多项式

在这里插入图片描述
这里判断 1 是否为特征根,看的是齐次递归关系求出来的根中有多少个 1 ,(2) 表示求出来有 m 个 1


在这里插入图片描述
在这里插入图片描述


在这里插入图片描述


在这里插入图片描述
在这里插入图片描述


在这里插入图片描述

2. f ( n ) f(n) f(n) β n \beta^n βn 的形式

在这里插入图片描述


在这里插入图片描述


在这里插入图片描述

4.4 迭代法和归纳法

在这里插入图片描述


在这里插入图片描述


在这里插入图片描述


在这里插入图片描述
在这里插入图片描述


在这里插入图片描述

4.5 母函数求解递归关系

不懂
在这里插入图片描述

对上述步骤进行解释:
在这里插入图片描述

在这里插入图片描述


在这里插入图片描述
在这里插入图片描述


在这里插入图片描述
在这里插入图片描述

这里主要是运用了两个序列的乘法!!!(这两个序列相同时就是平方关系了)
在这里插入图片描述


在这里插入图片描述
在这里插入图片描述

在这里插入图片描述


在这里插入图片描述
在这里插入图片描述

4.6 Stirling 数

在这里插入图片描述


1. 第一类 Stirling 数

在这里插入图片描述
在这里插入图片描述

2. 第二类 Stirling 数

在这里插入图片描述
在这里插入图片描述


在这里插入图片描述
在这里插入图片描述


在这里插入图片描述


在这里插入图片描述


在这里插入图片描述

课后习题

5. 求解下列递归关系

在这里插入图片描述
在这里插入图片描述


在这里插入图片描述


在这里插入图片描述
在这里插入图片描述


在这里插入图片描述


在这里插入图片描述
在这里插入图片描述


在这里插入图片描述


6. 求解下列递归关系式

在这里插入图片描述

在这里插入图片描述


在这里插入图片描述
在这里插入图片描述


在这里插入图片描述


在这里插入图片描述
在这里插入图片描述


在这里插入图片描述
在这里插入图片描述


9. 用母函数法求解下列递归关系式

在这里插入图片描述
在这里插入图片描述


在这里插入图片描述
在这里插入图片描述


在这里插入图片描述

13. 证明第二类Stirling数S2(n,k)具有性质:

在这里插入图片描述


在这里插入图片描述


14 利用 Stirling 数证明:

在这里插入图片描述

书上 P19 页 恒等式 12,可以解决你的未解之谜


15. 求下列和式之值

在这里插入图片描述


在这里插入图片描述

第五章 鸽笼原理与 Ramsey 定理

5.1 鸽笼原理的简单形式

提前总结: 只要能放进同一个笼子的鸽子,那他们就是相同的(这个非常关键)

在这里插入图片描述


在这里插入图片描述


在这里插入图片描述

在这里插入图片描述
4 个数同奇或同偶,则将这 4 个数放进 3 个盒子里面,总会有两个数在同一个盒子里面,他们相减为偶数。(奇 - 奇 = 偶、偶 - 偶 = 偶)

因此,将其放入到原始 a 1 − b 1 , a 2 − b 2 , a 3 − b 3 a_1 - b_1, a_2 - b_2, a_3 - b_3 a1b1,a2b2,a3b3 必然会存在上面这种情况,至少有一个同奇偶性的两个数相减。


在这里插入图片描述
在这里插入图片描述

  • 情况(2)n 个数,每个数对应一个余数,总共 n-1 个余数,所以一定存在有一个盒子可以装两个余数,鸽笼原理,装同一个笼子的鸽子,鸽子相同,即余数相同。

在这里插入图片描述

非负整数 = 自然数 = 0, 1, 2, 3, 4, …

任何一个正整数可以写成 奇数 * 偶数 的形式,即 2 k ∗ l 2^k * l 2kl 的形式,而 2 n 2n 2n 个数,只有 n n n 个奇数,所以这 2 n 2n 2n 个数中 l l l 只有 n n n 中选择,选出的 n + 1 n + 1 n+1 个数中,假设前 n n n 个数都是不同的奇数,最后一个数一定会与前 n n n 个数中的一个有相同的 l l l,因此它们相除,为整数


  • 用 10 个点将正三角形等分为 9 个小正三角形,将 10 个点放入 9 个小正三角形中,

在这里插入图片描述
在这里插入图片描述

  • 当 n = 2 时,这两个互不认识,熟人数均为 0;互相认识,熟人数均为 1,成立
  • 当 n ≥ 3 时,分三种情况:(第 1 个人的熟人数为 x 1 x_1 x1, 第 2 个人为 x 2 x_2 x2, …)
    • (1)每个人都有熟人:每个人的最大熟人数为 n - 1,所以盒子为 1, 2, …, n-1,共计 n - 1 个盒子, x 1 , x 2 , . . . , x n x_1, x_2, ..., x_n x1,x2,...,xn 这 n 个鸽子,所以鸽笼原理,至少两个鸽子在同一笼子中,假设 x k x_k xk x l x_l xl 在同一笼子中,则 x k = x l x_k = x_l xk=xl
    • (2)只有一个人没有熟人,同(1),只是笼子和鸽子数个减少 1
    • (3)假设至少两个人没有熟人,也同上
    • 综上:结论成立

在这里插入图片描述

  • 注意下面题解 ① ② 中间少了省略号 …
    请添加图片描述

请添加图片描述


5.2 鸽笼原理的一般形式

在这里插入图片描述

  • 前面的鸽笼原理是说, n + 1 个物体放入 n 个盒子中,则至少存在一个盒子放有两个物体。将 n + 1 个物体,换为 2 + 2 + ··· + 2 - n + 1,注意这里的 2,刚好对应了至少存在一个盒子放有 2 个物体,进一步看下面的推广。

在这里插入图片描述

  • 将前面的 2 + 2 + ··· + 2 - n + 1 中的每个 2 换为更一般的不同数, q 1 + q 2 + ⋅ ⋅ ⋅ + q n − n + 1 q_1+ q_2 + ··· + q_n - n + 1 q1+q2+⋅⋅⋅+qnn+1,这样同理可以使得第 i i i 个盒子至少放有 q i q_i qi 个物体
  • 注意这里推广后物品的总数不再是之前的 n + 1 n + 1 n+1 个,而是 q 1 + q 2 + ⋅ ⋅ ⋅ + q n − n + 1 q_1+ q_2 + ··· + q_n - n + 1 q1+q2+⋅⋅⋅+qnn+1

在这里插入图片描述

这里体会一下鸽笼原理, 至少能装 q i q_i qi 个物体,总共 21 个水果,是由满足要求的 8 + 6 + 9 然后会每样减去 1 个,这样就是 7 + 5 + 8,每样都恰好不满足要求,最后的 + 1 注入了灵魂,加进去这一个,肯定使得有一种水果满足了要求!!!


在这里插入图片描述

  • 推论理解: n ( r − 1 ) + 1 = n r − n + 1 = r + r + r + ⋅ ⋅ ⋅ + r − n + 1 n(r - 1) + 1 = nr - n + 1 = r + r + r + ··· + r - n + 1 n(r1)+1=nrn+1=r+r+r+⋅⋅⋅+rn+1,所以至少存在一个盒子放有不少于 r 个物体。
  • 这里相当于有 n r − n + 1 nr - n + 1 nrn+1 个物品,而不是之前的 n + 1 n + 1 n+1 个物品了

在这里插入图片描述

  • 思考: 首先假设这个序列中没有长度为 n + 1 n+1 n+1 的递增子序列,然后证明一定有一个长度为 n + 1 n+1 n+1 的递减子序列
  • m k m_k mk 表示以 a k a_k ak 为首项的最长递增子序列的长度,由于假设这个序列没有长度为 n + 1 的递增子序列,所以长度关系为, 1 ≤ m k m_k mk ≤ n. 重点就是说 n 2 + 1 n^2 + 1 n2+1 个数的范围都在 1 ~ n 之间。
  • n 2 + 1 n^2 + 1 n2+1 可以分解为 n((n + 1) - 1) + 1,即对应推论 1 中的 r = n + 1,也表示这 m 1 , m 2 , . . . , m n 2 + 1 m_1, m_2, ... , m_{n^2+1} m1,m2,...,mn2+1 中 一定有 n + 1 个数相同
  • k i < k i + 1 k_i < k_{i+1} ki<ki+1 时,必有 a k i ≥ a k i + 1 a_{k_i} ≥ a_{k_{i+1}} akiaki+1, 因为这是一个递增子序列,如果 a k i < a k i + 1 a_{k_i} < a_{k_{i+1}} aki<aki+1,就可以把 a k i a_{k_i} aki 放到以 a k i + 1 a_{k_{i+1}} aki+1 为首项的最长递增子序列的前面,使得 m k i m_{k_{i}} mki 的长度增加
  • 由于 m k 1 = m k 2 = m k 3 = ⋅ ⋅ ⋅ = m k n + 1 m_{k_1} = m_{k_2} = m_{k_3} = ··· = m_{k_{n+1}} mk1=mk2=mk3=⋅⋅⋅=mkn+1 1 ≤ k 1 ≤ k 2 ≤ k 3 ≤ ⋅ ⋅ ⋅ ≤ k n + 1 ≤ n 2 + 1 1 ≤ k_1 ≤ k_2 ≤ k_3 ≤ ··· ≤ k_{n+1} ≤ n^2 + 1 1k1k2k3⋅⋅⋅kn+1n2+1 ,如 m k 1 m_{k_1} mk1 表示以 a k 1 a_{k_1} ak1 为首项的递增子序列, m k 2 m_{k_2} mk2 表示以 a k 2 a_{k_2} ak2 为首项的递增子序列,必有 a k 1 ≥ a k 2 a_{k_1} ≥ a_{k_2} ak1ak2,如果不大于,则有 a k 1 < a k 2 a_{k_1} < a_{k_2} ak1ak2 ,则 m k 1 m_{k_1} mk1 = m k 2 m_{k_2} mk2 + 1,与 m k 1 = m k 2 m_{k_1} = m_{k_2} mk1=mk2 矛盾,所以对于任意的 k i < k i + 1 k_i < k_{i + 1} ki<ki+1,都有 a k i ≥ a k i + 1 a_{k_i} ≥ a_{k_{i + 1}} akiaki+1

在这里插入图片描述

  • 大圆盘中的扇形有 100 个红色, 100 个蓝色,则小圆盘中每个扇形有 100 次配成同色的可能,即一共有 200 × 100 个。 200 × 100 > 200 × (100 - 1) + 1,说明至少有一种小圆盘与大圆盘的叠放可以使得至少有 100 个同色的扇形对

在这里插入图片描述

在这里插入图片描述


在这里插入图片描述

m i m_i mi 为什么有 10 个,是因为比如:1 2 3 4、可以有 1 2 3、2 3 4、3 4 1、4 1 2,这 4 个。

∑ i = 1 10 m i = \sum_{i=1}^{10} m_i = i=110mi= (1 + 2 + ··· + 10) * 3 表示的是 m i m_i mi 中所有数之和等于 1 到 10 每个数都用了 3 次。为什么呢,比如上面的 1 2 3 4、是不是 1 用了 3 次,2 用了 3 次,3 用了 3 次,4 也用了 3 次。


5.3 Ramsey 定理

在这里插入图片描述


在这里插入图片描述

n ( r − 1 ) + 1 , 2 ( r − 1 ) + 1 n(r - 1) + 1, 2 (r - 1) + 1 n(r1)+12(r1)+1

5 个与 p p p 相识的人(5 个物品) 分为 2 个集合(装入两个盒子中),则必有一个盒子中的数量至少为 r,5 = 2(r - 1) + 1,解得 r = 3.


在这里插入图片描述
在这里插入图片描述


在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

课后习题

在这里插入图片描述


在这里插入图片描述


在这里插入图片描述


在这里插入图片描述

注意: 这里必能,是个存在性问题,有就行了


在这里插入图片描述
在这里插入图片描述


在这里插入图片描述


在这里插入图片描述
在这里插入图片描述


在这里插入图片描述


在这里插入图片描述



在这里插入图片描述
在这里插入图片描述


在这里插入图片描述
在这里插入图片描述

总结

1. 将球放入盒中的方法数总结(球盒模型问题)

1.将n个无区别的球放入r个有标志的盒中,没有一个盒子为空,有多少种情况?

2.将n个有区别的球放入r个有标志的盒中,没有一个盒子为空,有多少种情况?

3.将n个无区别的球放入r个无标志的盒中,没有一个盒子为空,有多少种情况?

4.将n个有区别的球放入r个无标志的盒中,没有一个盒子为空,有多少种情况?

5.将n个无区别的球放入r个有标志的盒中,盒内数目无限制,有多少种情况?

6.将n个有区别的球放入r个有标志的盒中,盒内数目不限制,有多少种情况?

7.将n个无区别的球放入r个无标志的盒中,盒内数目不限制,有多少种情况?

8.将n个有区别的球放入r个无标志的盒中,盒内数目不限制,有多少种情况?

在这里插入图片描述


在这里插入图片描述

在这里插入图片描述

2. 整数划分(知识补充与说明)

在这里插入图片描述

在这里插入图片描述


在这里插入图片描述

在这里插入图片描述


注意盒子有区别:
在这里插入图片描述


在这里插入图片描述
在这里插入图片描述


在这里插入图片描述


在这里插入图片描述
最大数为 m,说明 m 至少要选择一次!!!,所以 x m x^m xm 开始,而不是从 1 开始


在这里插入图片描述


在这里插入图片描述


3. 各章节手写部门总结(是一些本人先记住与分析的记录)

在这里插入图片描述


在这里插入图片描述

C(x) 的最外层需要加上 k 从 0 到无穷的求和


在这里插入图片描述


在这里插入图片描述


在这里插入图片描述


在这里插入图片描述
在这里插入图片描述


17. 补充
在这里插入图片描述

在这里插入图片描述


在这里插入图片描述


在这里插入图片描述


在这里插入图片描述


在这里插入图片描述


在这里插入图片描述

历年试卷

( 2020 2018 2017 2014 各年题)

2021 电子科技大学 组合数学试卷 (卢光辉、戴波 ) 下面是连接中部分题的题解

在这里插入图片描述

在这里插入图片描述


在这里插入图片描述
在这里插入图片描述

需要特别注意的是 3 x 2 3x_2 3x2 对应的母函数是 1 + x 3 + x 6 + . . . 1 + x^3 + x^6+ ... 1+x3+x6+...


在这里插入图片描述
在这里插入图片描述


在这里插入图片描述

在这里插入图片描述


在这里插入图片描述
在这里插入图片描述


在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

错的下面这个做法,需要满足男女相间,夫妇不相邻再做

在这里插入图片描述


在这里插入图片描述


在这里插入图片描述
50 + 11 = 61, 共计 31 * 2 = 62


在这里插入图片描述

710 亿, 72 个值,共计 720 亿, 将 10 亿缩短为 1 亿
在这里插入图片描述


在这里插入图片描述

2022

在这里插入图片描述

2023

第一题: 证明恒等式: ∑ k n C ( n , k ) 2 = C ( 2 n , n ) \sum_k^nC(n, k)^2 = C(2n, n) knC(n,k)2=C(2n,n)

第二题:(1)鸽笼原理,367 个人同年,证明两个人同年同月同日生.(2)也是一个很简单的鸽笼原理

第三题:容斥原理,求 2、3、5 能被 S 中任意一个整数的数目, S 是 10000 内能被 7 整除的数

第三题:母函数求重集的组合题

第四题:递归关系求解

第五题:棋盘多项式

第六题:母函数证明题

第七题:关于求重集的 n 排列的算法,有数字限制。

References

[1] 组合数学学习笔记(一)

[2] 慕课视频

[3] 《组合数学全家桶》(ACM / OI 全网最全,清晰易懂)

MarkDown Latex 数学符号手册

计数原理3.3 圆排列 第一类Stirling数

圆排列

☆☆☆ 2021 电子科技大学 组合数学试卷 (卢光辉、戴波 )

☆☆☆ 组合数学学习笔记(一)

知乎 sola 组合数学讲解

  • 32
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 电子科技大学信号检测与估计课程在实践中的相关资料可在CSDN上获取。CSDN是中国最大的IT技术社区和知识分享平台,拥有大量的技术博客、论坛和开发者社区。在CSDN上,我可以通过搜索关键词“电子科技大学信号检测与估计”找到相关的博客、教程以及其他开发者的分享和讨论。 在CSDN上,我可以找到电子科技大学信号检测与估计课程的实验教程、项目案例分析等资料。这些资料可以帮助我理解和学习信号检测与估计的基本原理和应用技巧。我还可以从其他开发者的经验分享中获取一些实践技巧和解决问题的思路。 此外,CSDN还有丰富的学习资源,如相关书籍、文档和学术论文。这些资源可以为我提供更全面的学习材料,帮助我更好地掌握信号检测与估计的理论和实践知识。 总之,CSDN是一个非常有用的平台,我可以在其中找到关于电子科技大学信号检测与估计课程的有关资料,提高自己的学习和实践能力。 ### 回答2: 电子科技大学(University of Electronic Science and Technology of China,简称UESTC)是一所位于中国成都的重点综合性研究型大学,以电子科学与技术为主要特色,涵盖了工学、理学、管理学、人文学科等多个学科领域。 信号检测与估计是UESTC中电子工程学院的一个重要研究方向,旨在研究和应用信号处理技术来检测和估计信号中的特定模式和参数。这个领域主要包括信号检测理论、信号估计理论、信号处理算法等。 在信号检测方面,研究人员通过设计和分析特定的检测算法,来判别信号中是否存在特定的目标或特征。通过对信号的特性和背景噪声的分析,研究人员可以提高检测的准确性和可靠性。同时,也可以通过模型选择和假设检验等方法来优化检测系统。 而在信号估计方面,研究人员通过采用各种统计方法和数学模型,估计出信号中的未知参数,如幅度、频率、相位等等。这个过程需要对信号进行合理的建模,并利用最优化算法和参数估计理论,实现对信号参数的准确估计。 电子科技大学在信号检测与估计领域的研究取得了一系列的重要成果。研究人员不仅在基础理论研究上有所突破,还将其应用于各种实际问题,如通信系统中的信号检测与估计、雷达信号处理、医学影像处理等领域。此外,该领域的研究也为学生提供了深入学习和实践的机会,培养了一大批优秀的信号处理专业人才。 总之,电子科技大学的信号检测与估计研究在学术和应用上都具有重要的意义,为推动相关行业的发展和培养专业人才做出了重要贡献。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值