C++KMP模板:
// s[]是长文本,p[]是模式串,n是s的长度,m是p的长度
求模式串的Next数组:
for (int i = 2, j = 0; i <= m; i ++ )
{
while (j && p[i] != p[j + 1]) j = ne[j];
if (p[i] == p[j + 1]) j ++ ;
ne[i] = j;
}
// 匹配
for (int i = 1, j = 0; i <= n; i ++ )
{
while (j && s[i] != p[j + 1]) j = ne[j];
if (s[i] == p[j + 1]) j ++ ;
if (j == m)
{
j = ne[j];
// 匹配成功后的逻辑
}
}
KMP理解:
KMP的主要思想是当出现字符串不匹配时,可以知道一部分之前已经匹配的文本内容,可以利用这些信息避免从头再去做匹配了。
如下图,模板串中蓝色aba等于绿色aba(保证这是最长的前缀等于后缀),如果模板串和文本串下一个不匹配,则模板串不需要移动到第一个进行匹配,文本串也不需要移动到前面,移动到前缀的后一个即可,因为前缀等于后缀,文本串的后缀下一个不相等,则需要模板串从前往后比较时,前缀则不需要比较(因为肯定等于子串的后缀)。
在这个过程中,其实我们都是看模板串的前缀和后缀,则next数组就是保存的模板串,当前位置最少移动到哪个位置的下标。
(此理解只是我当前理解,未查阅其它资料,还是有点不清晰,后续完善)
题目: AcWing 831. KMP字符串
给定一个模式串 S,以及一个模板串 P,所有字符串中只包含大小写英文字母以及阿拉伯数字。
模板串 P 在模式串 S 中多次作为子串出现。
求出模板串 P 在模式串 S 中所有出现的位置的起始下标。
输入格式
第一行输入整数 N,表示字符串 P 的长度。
第二行输入字符串 P。
第三行输入整数 M,表示字符串 S 的长度。
第四行输入字符串 S。
输出格式
共一行,输出所有出现位置的起始下标(下标从 0 开始计数),整数之间用空格隔开。
数据范围
1≤N≤105
1≤M≤106
输入样例:
3
aba
5
ababa
输出样例:
0 2
#include <iostream>
using namespace std;
const int N = 100010, M = 1000010;
char p[N],s[M];
int n,m;
int ne[N];
int main()
{
cin>>n>>p+1>>m>>s+1;
// 求kmp next数组
for(int i=2,j=0;i<=n;i++)
{
while(j&&p[j+1]!=p[i])j=ne[j];
if(p[i]==p[j+1])j++;
ne[i]=j;
}
// kmp 求解过程
for(int i=1,j=0;i<=m;i++)
{
while(j&&p[j+1]!=s[i])j=ne[j];
if(p[j+1]==s[i])j++;
if(j==n)// 匹配成功
{
cout<<i-n<<' ';
j=ne[j];
}
}
return 0;
}