【论文笔记】Global localization of 3D point clouds in building outline maps of urban outdoor environments

【论文笔记】Global localization of 3D point clouds in building outline maps of urban outdoor environments

    ~~~          ~~~~     本文提出了一种基于包含建筑物轮廓和道路网络信息且没有位置先验信息的稀疏二维地图在全局坐标系中定位机器人的方法。它的输入是机器人周围环境的单个 3D 激光扫描。该方法通过在成本函数中包含可见性分析,扩展了图像处理中的通用倒角匹配模板匹配技术。因此,观察到的建筑平面与相应地图部分的预期视图相匹配,而不是与整个地图相匹配,这使得更准确的匹配成为可能。该方法在不同现实世界城市环境中收集的两个大型数据集上进行评估,并与文献中的基线方法和标准倒角匹配方法进行比较,显示出相当大的性能优势,以及基于基于稀疏的建筑轮廓数据全局定位的可行性。

方法描述

    ~~~          ~~~~     本文描述的全局定位方法使用 3D 激光扫描作为传感器输入数据。 它与城市环境的 2D 地图相匹配,其中包含有关建筑物轮廓和街道网络的信息。 这种类型的数据可以从各种来源检索,例如谷歌地图、官方地籍图或 OpenStreetMap 项目,用于本文中的评估。
  本文中用于定位的传感器数据来自 3D 激光扫描仪。仅使用距离数据,但通常也可以使用激光强度形式的外观数据。由于此处讨论的定位问题是 2D 模板匹配问题,因此最初的 3D 传感器数据通过从数据中提取垂直平面段并将其进一步简化为一组表示这些假定建筑轮廓的线段,将其简化为 2D 表示。来自传感器数据的建筑物边缘与 2D 建筑物轮廓图之间的匹配是使用图像处理中已知的快速简单的模板匹配程序计算的。由于用于映射的模板匹配问题具有标准程序未考虑的特殊属性,因此可以改进该方法的结果。来自建筑地图和街道网络的信息也被用于进一步减少后续处理有效的候选数量。然后通过倒角匹配程序的变体进一步细化剩余的候选姿势,该程序考虑了激光数据匹配问题特有的可见性因素,并对传感器数据中不存在的建筑物出现在相应的地图部分中的匹配进行了惩罚。该计算的结果用于对候选者进行排名,并提取最高候选者作为估计姿势,或使用排名后的候选者集进行进一步处理,例如,用于 SLAM 系统的初始化。处理步骤的顺序也如图 1 所示
  图片1

点云处理与建筑轮廓线段检测

    ~~~          ~~~~     在解决在建筑物轮廓图上定位机器人的模板匹配问题之前,必须将输入数据简化为一组代表传感器视野中假定的建筑物轮廓的线。 为此,第一步是减小非常密集的点云的大小。 为此,使用矩形长方体近似框架 (RMAP) (Khan et al. 2014) 将点云转换为由低分辨率长方体单元组成的占用网格,并减少噪声观测的数量。 在这个数据结构中,可以有效地为每个被占用的长方体单元计算法向量。 由于我们对构建轮廓感兴趣,并且可以假设机器人在街道上行驶的侧倾角和俯仰角是已知的,因此可以通过选择具有平行于地面的法向量的长方体单元从占用网格中提取垂直表面
  然后,通过将这些垂直方向的长方体单元的 z 坐标设置为零,将它们投影到地平面,并计算每单位面积的单元数。结果是机器人传感器范围内垂直方向的长方体单元的直方图。为了从这种表示中提取建筑物轮廓的目标,应该保留来自点云的法线信息,因为只有具有相似法线方向的点才能属于公共平面。我们通过合并长方体单元的偏航角并为每个角度范围创建单独的直方图来使用此信息。在这些直方图中的每一个中,使用概率霍夫变换提取线段(Matas 等人,2000 年)。它们之间具有小距离的平行线段和具有小间隙的共线线被合并以减少所得边缘集中的噪声。建筑物轮廓提取过程如图 2 所示,其中显示了定向长方体的直方图和基于它们计算的线段。
  图片2

定向倒角匹配解决定位问题

    ~~~          ~~~~     从激光数据中检索到建筑物轮廓后,在建筑物地图中检索机器人位姿就成为模板匹配问题。 倒角匹配(Barrow et al. 1977)是一种行之有效的模板匹配方法,它特别适用于寻找线段集之间的对应关系。 本节介绍倒角匹配的思想和对其原始成本函数的扩展,使其适应定位匹配模板的问题。
  倒角匹配旨在在机器人坐标系 U = {ui}, i = 1, … , n 中找到模板边缘图的变换,使其最佳匹配查询边缘图 V = {vi}, i = 1, … , m 在地图坐标系中。 这个变换是一个二维欧几里得变换 s ∈ SE(2),其中 s = (θ, tx, ty)。 可以解释为在地图的坐标系中定义机器人的位姿,其中它的位置由 (tx, ty) 给出,其航向由 θ 给出。 这种变换对机器人测量的影响可以通过旋转和随后的平移计算为
  公式1
  查询边缘图与模板图的最佳对齐是最小化两个图之间的距离函数 d 的变换结果。
  公式2
  下面,将变换后的查询边集 W(U, s) 记为 Û 。
  可以使用不同的距离函数。 对于标准倒角匹配,距离函数由查询边缘图中每个点到模板边缘点的最小距离给出
公式3
  对于由线性段组成的边缘图,考虑边缘的方向并惩罚具有不同方向的边缘点之间的匹配会更健壮和有效。 这种推理导致了定向倒角匹配 (DCM) 的距离函数 (Liu et al. 2010)
公式4
  其中为每个边缘点确定了一个边缘方向 ϕ,并且方向的距离被确定为它们之间所需的最小旋转。 在可以对边缘方向空间进行离散化的应用中,可以通过计算距离变换张量来有效地计算优化(2),该张量包含每个查询边缘点的成本贡献。 这种近似是在快速定向倒角匹配 (FDCM) 方法中制定的(Liu 等人,2010 年)。 在模板和查询边缘图可以表示为线性段集的情况下,每个点的单个贡献的总和可以通过计算积分距离变换仅涉及线段端点的计算来代替。
  这些成本函数旨在用于在从杂乱图像派生的模板边缘图中查找简单查询边缘图的任务。期望,为了模板和查询边缘图变换之间的良好匹配,查询边缘图中的每条边缘都接近模板边缘图中的匹配边缘。成本计算中不考虑距离较远的所有边。对于在建筑物轮廓图中定位一组建筑物边缘的应用,由于典型建筑物地图的结构化性质,其中可能存在许多与机器人传感器观察到的部分相似的区域,因此也需要惩罚匹配,其中应存在于查询中的模板的某些部分不存在。这在图 3 中进行了说明,该图显示了模板边缘图的两种可能变换,它们都导致相同的 (D)CM 成本值,但其中一个显然比另一个更糟糕,因为建筑物边缘从扫描中得出的不包含预期会被观察到的建筑物。
  图3
  虽然关于模板地图的哪些边应该与查询地图中的边匹配的信息在一般模板匹配任务中是不可用的,但可以通过提取所有可见的线来生成定位任务的预期观察值的估计。 来自给定机器人姿势的地图。 我们用 Ve(tx, ty) 表示从位置 (tx, ty) 可见的这组边。 根据这个定义,只考虑给定机器人位置的预期观测值的前向成本函数可以定义为
  公式5
  此外,关于预期观测值的知识还允许定义一个反向成本函数,该函数描述了预期观测值 V e V_e Ve 在实际观测值 U ^ \hat{U} U^ 中的表示程度
公式6
  最后,可以将前向成本(5)和反向成本(6)组合起来,形成一个在期望模板边缘图和查询图上对称的成本函数
公式7
  类似地,类似于(4)的后三个成本函数的定向扩展是可能的。
  计算这些成本函数的优化 (2) 比成本函数 (3) 和 (4) 复杂得多,因为构成成本函数计算中使用的模板边缘图的可见边缘集取决于关于所考虑的坐标系变换的平移。这意味着当模板地图覆盖的区域很大时,距离变换张量的计算是不可能的,该张量独立于坐标变换并允许在 FDCM 方法中进行有效计算。尽管可以使用二进制空间分区 (BSP) 树(Fuchs 等人,1983 年)有效地实施可见性分析,但使用成本函数 df 、dr 或 ds 对(2)进行蛮力优化的计算成本高得令人望而却步。出于这个原因,在这项工作中,我们采用启发式方法,假设这些成本函数的最小值也会导致更简单的成本函数 dDCM 的值较低,如果不是全局最优的。在这个假设下,FDCM 方法可以在第一遍中用于生成一组姿势候选 C = {ci} = {(θi, tx,i, ty,i)}, i = 1, … , nC导致 d DCM 的值在其全局最小值的给定因子内。仅对于这些转换,计算可见线,并评估更复杂的成本函数。

使用 OpenStreetMap 信息过滤候选位置

    ~~~          ~~~~     可以通过建筑物地图中可用的其他知识进一步限制用于有效定位候选者的姿势数量。例如,可以丢弃位于建筑物内的姿势。此外,如果像我们的例子一样,机器人沿着道路行驶,那么从道路网络的任何边缘移除超过给定距离的姿势也可以被丢弃。对于本文中进行的实验,我们只考虑从 OpenStreetMap 网络中的街道元素中移除小于 12 m 的候选姿势。在第一次 FDCM 优化生成的许多候选姿态中,根据它们在建筑物内的位置或它们与标记道路的距离,许多是无效的,因此不必考虑进一步评估。这在图 4 中进行了说明,该图显示了输入场景的候选姿势的位置,该场景在考虑定位的区域内产生许多匹配。该图可视化了哪些点被认为是有效的候选点,哪些点根据上面列出的标准被丢弃。

实验

    ~~~          ~~~~     对上述全局定位方法的定位精度进行了广泛的评估。 来自具有不同特征的城市环境的两个不同数据集的数据用于评估。 使用文献中的基线方法进行比较,以及使用第 3 节中描述的扩展成本函数的好处。 3.3 显示了标准 DCM 方法。

实验结果

    ~~~          ~~~~     对所提出的定位方法的结果的评估如图 5 所示。它比较了标准成本函数 dDCM 和新提出的反向成本的准确最佳排序扫描次数(取决于搜索区域的大小)。其他两个新定义的成本函数 df 和 ds 的结果比反向成本函数略差,但仍优于标准 DCM 成本 dDCM,因此为简洁起见,省略了个别结果。 图 6 展示了基于散列的基线方法和使用相同分析方法的反向成本函数的 DCM 方法的比较。
图片5
图片6

结果讨论

    ~~~          ~~~~     通过检查结果可以看出,即使在大多数情况下,即使对于大型搜索区域,所提出的方法也会生成准确的最高排名候选姿势。考虑到大量的高排名候选者改进了这一结果,这在诸如生成用于蒙特卡罗定位系统的姿态估计的初始分布等应用中非常有用。尽管以增加计算成本为代价,但考虑到机器人的预期观察的成本函数始终改善了 DCM 模板匹配方法的结果。特别是,如图 5 所示,与标准 DC​​M 成本函数相比,随着搜索区域的增加,反向成本函数会产生更稳定的定位结果。如图 6 所示,所提出的方法也优于基于几何散列的更简单的方法,尽管如此,它仍然能够在较小的区域内准确地定位激光扫描。如果位置估计(例如来自 GPS)可用,但不能为较大区域提供令人满意的结果,则这很有用。如图 7 所示,该方法失败的两个原因是在包含少量建筑物的区域中缺乏可靠的特征,以及由于地图错误或环境的临时变化导致地图与环境不匹配。结果还表明,即使在没有建筑物拐角可见的情况下,所提出的方法也能成功地工作,例如在只有大建筑物的边角在传感器范围之外的情况下,或者在建筑物拐角的情况下被遮挡。这对于依赖几何散列或类似技术的方法是不可能的,这些技术依赖于准确的建筑角位置。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值