【论文笔记】Stereo Camera Localization in 3D LiDAR Maps

本文提出了一种轻量级算法,利用3D LiDAR地图进行立体相机定位。在GPS信号不可靠的城市环境中,通过深度残差最小化估计六自由度相机姿态,实现高精度定位。该方法包括预处理、深度图生成、局部地图提取和跟踪模块,具有在线运行和低平均定位误差的特点。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

【论文笔记】Stereo Camera Localization in 3D LiDAR Maps

随着 3D 光探测和测距 (LiDAR) 传感器的出现,同步定位和映射 (SLAM) 技术蓬勃发展,因此准确的 3D 地图很容易获得。许多研究人员将注意力转向先前获得的 3D 地图中的定位。在本文中,我们提出了一种新颖且轻量级的仅相机视觉定位算法,该算法涉及先前 3D LiDAR 地图中的定位。我们的目标是在 GPS 信号不可靠的城市环境中使用视觉来实现消费者级别的全球定位系统 (GPS) 精度。通过利用立体相机,立体视差图的深度与 3D LiDAR 地图匹配。通过最小化深度残差来估计完整的六自由度 (DOF) 相机姿态。在视觉跟踪的支持下,为定位提供了良好的初始猜测,所提出的深度残差成功应用于相机姿态估计。我们的方法在线运行,因为平均定位误差与最先进的方法产生的误差相当。我们使用 KITTI 数据集将所提出的方法验证为独立的定位器,并使用我们自己的数据集作为 SLAM 框架中的模块进行验证。

方法

我们提出了一种能够根据先前给定的 3D 地图定位立体相机的系统。 我们假设提供了初始相机姿势,并在给出粗略的初始猜测的情况下执行定位。 图 2 显示了所提出的定位器的示意图。 我们的系统由四个模块组成。 在预处理中,对从地图中获取的原始数据和立体图像流进行处理,以用于后面的跟踪和定位模块。 在深度图生成中,深度图是通过使用立体视差来生成的。 在局部地图提取中,从全局地图中提取将与深度图匹配的局部3D地图。 为了确定相机姿态的初始猜测,在定位之前添加跟踪。 在该模块中估计连续图像帧之间的相对位姿。 然后,通过使用跟踪过程中的局部图、深度图和假定位姿来估计 6 DOF 相机位姿。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值