【论文笔记】3D LiDAR-Based Global Localization Using Siamese Neural Network

【论文笔记】3D LiDAR-Based Global Localization Using Siamese Neural Network

    ~~~          ~~~~      在本文基于从神经网络中学习到的降维扫描表示,提出了一种全局定位的解决方案,即首先实现位置识别,然后在全局先验图中进行度量姿态估计。具体来说,我们提出了一种使用人工统计和孪生网络的 3D 光检测和测距 (LiDAR) 点云半手工特征学习方法,将地点识别问题转化为相似性建模问题。此外,使用降维表示的传感器数据需要更少的存储空间并使搜索更容易。通过网络和全局姿态学习到的表示,在定位框架中构建和使用先验地图。在定位步骤中,粒子滤波器算法使用通过位置识别获得的仅位置观测值来实现精确的姿态估计。为了证明我们的位置识别和定位方法的有效性,KITTI 基准测试和我们的多会话数据集被用于与其他基于几何的算法进行比较。结果表明,本文提出的系统可以实现长期自治的高精度和效率。
  本文中通过使用称为 LocNet 的深度网络解决全局定位问题,该网络学习 LiDAR 点云的表示并将表示嵌入到低维欧几里得空间中,通过应用 K 维树结构(KD-tree)进行高效匹配.训练数据集也可以自动注释,无需任何手动注释。如图 1 和图 2 所示,LocNet 的主干是 siamese 神经网络的一侧,siamese 网络旨在学习两个输入之间的相似性。为了降低学习的复杂度和训练数据量,本文在siamese网络之前添加了一个提取LiDAR扫描旋转不变特征的阶段,因此网络可以更轻量级,进一步提高效率。基于学习到的表示,在线扫描可以与地图匹配作为仅位置测量,这是全局坐标中姿势的二维位置。为了推导出相对于地图的姿态,本文提出了一个粒子滤波器来融合来自运动和由此产生的仅顺序位置测量的信息,最终在没有先验的情况下在地图中定位自治系统。本文的贡献如下:
  1.提出了 3D 点云的半手工表示,它通过 LocNet 实现了旋转不变性。 可以在欧几里德空间中评估最终低维特征之间的相似性,保证地点识别的搜索效率。
  2.提出了一个仅使用学习表示和匹配结果进行位置测量的全局定位框架。 利用高斯混合模型对地点识别结果的多个假设进行建模,在发生错误测量时成功实现全局定位。
  3.对定位框架进行可观察性分析,为提议的系统添加理论基础和实践指南。 进行了彻底的实验以证明所提出的全局定位方法的有效性和效率。

系统概述

    ~~~          ~~~~     所提出系统的架构如图 1 所示。主要有两个组成部分:地图构建和定位。在地图构建阶段,一系列捕获的 LiDAR 扫描 {Si} 被馈送到 LocNet 以生成特征表示 { fi }。基于这些特征,构建了一个 KD 树以实现高效匹配。同时,激光雷达扫描也由 SLAM 系统处理以构建地图或轨迹。具体来说,在相似位置获取的两次 LiDAR 扫描之间的相对位姿是通过扫描对齐计算的 [30]。这些相对位姿形成一组约束来构建位姿图,在此基础上通过图 SLAM 计算每个 LiDAR 扫描的位姿的全局一致估计。然后将两个模块的输出组合为由全局一致图 M = {N, E} 组成的最终地图。图的每个节点都分配有 LiDAR 扫描 Si、全局姿态 xi ∈ SE(3) 和特征 fi,即 ni = {Si, xi, fi } ∈ N。对于图中的每条边,拓扑存储连接信息,用于减少匹配候选的空间。结果,地图被总结为一组特征,由两个结构组织,一个 KD 树和一个位姿图。此外,可以通过使用 xi 注册扫描 Si 来导出全局点云图 P。
图片1
  在定位阶段,实时获取一系列 LiDAR 扫描。当前 LiDAR 扫描 St 的特征 ft 是通过应用 LocNet 提取的。该特征被视为对特征 KD 树的查询以搜索一组匹配的候选者。通过考虑位姿图中的邻接关系进一步过​​滤这些候选者,产生 Nc ∈ N。之后,结果匹配的位姿 {xi|ni ∈ Nc} 被视为粒子过滤器的测量值。通过进一步采用 LiDAR 里程计作为运动模型,粒子滤波器能够通过递归聚合来自运动和测量的信息来收敛到位姿分布。最后,将粒子滤波器逼近的姿态分布的期望值作为xt最终定位的初始值,将当前的LiDAR St与点云图P对齐。 总的来说,整个定位过程是从2D姿态到3D姿态,并且降低了从头开始精确姿态估计的复杂性。

3D 激光雷达扫描的特征学习

    ~~~          ~~~~     可以看出,LocNet 是映射和定位阶段的特征提取模块。 基于生成特征的相似性评估是影响整个系统性能的关键因素。 为了匹配在同一位置捕获的扫描,需要一种对旋转和轻微平移不变的特征表示,同时也降低了地图的复杂性。 此外,该方法有望对机载硬件有效,从而使自治系统可以实现实时性能。 为了解决这些问题,我们提出了一种使用神经网络学习 3D LiDAR 扫描特征的方法,如图 2 所示。 LocNet 遵循半手工特征学习架构并将特征嵌入欧几里德空间,因此 显着降低了网络的复杂度和相似性评估,提高了效率。 LocNet 在自动标注数据集上进行训练,从而节省大量人工和管理。
图片2
  手工制作的特征 R r R_r Rr R Δ r R_{Δr} RΔr 对航向旋转是不变的。但是对于由地面平整度引起的侧倾、俯仰偏差和垂直运动,这些特征可能很敏感。一个直观的情况是,当两次 LiDAR 扫描在同一个位置、相同航向、但高度略有不同时,可以通过环偏差引入方差,例如第一次扫描中环 1 扫描的物体为对应于第二次扫描中的环 2。因此,这种差异需要更复杂的相似性评估方法,如相关性,因此更耗时 [7]。此外,横滚和俯仰偏差带来的方差可以耦合,而不仅仅是环偏差。环境中的半静态物体,例如停放的汽车也会带来变化,这种环境变化是无法避免的,因为测绘会话和定位会话在时间上是不同的。为了解决这些问题,深度学习被用来进一步提高性能。

1.头部不变表示

    ~~~          ~~~~     捕获旋转不变性和轻微平移不变性的一个快速想法是使用大量数据训练一个大型网络,以便可以捕获这些不变性。 然而,这种方法不是轻量级的,因为我们没有像视觉社区那样预训练的网络。 为了简化学习复杂度,我们在将训练数据输入网络之前减少了它们的方差。 鉴于自主系统获得的扫描结果,最显着的差异在于车辆旋转和水平运动的航向和平移。 对于滚动、俯仰和垂直运动,方差主要受地面平整度的限制。 实际上,当车辆在同一地点旋转时,激光雷达数据的距离值保持不变。 因此,我们设计了一个旋转不变的手工特征作为后续部分的输入。
  我们为了清楚而丢弃扫描 Si 的下标。 S 中的每个点在球坐标系中表示为 (r, θ, ϕ)。具体而言,r为激光传感器到激光点的直线 l l l的径向距离,θ表示天顶方向或Z轴到直线 l l l的极角,方位角 ϕ 由 l l l 在传感器框架的 xy 平面上的正交投影测量。考虑到一般的 3D LiDAR 传感器,由于 LiDAR 数据中的环不同,θ 是离散的,因此帧 S 可以分为多个测量环,记为 Sk ∈ S,其中 k 是环的索引。在每个环中,点按逆时针方向按方位角 ϕ 排序。我们将 ϕ 确定的索引表示为 j。因此,在 S 中,每个点 pk,j 由环索引 k 和方位角索引 j 索引。请注意,当 LiDAR 连接到自治系统时,其方位角能够反映系统的航向,这表明可以通过构建方位角不变的特征来实现航向不变。
  给定一个环 Sk,两个连续激光点 pk, j 和 pk, j−1 之间的二维距离计算为
  公式1
  其中 r 是激光点的距离值。 在本节中提出了两个选项来构建该特征。 在训练集上,我们可以找到所有范围 Ir = [rmin, rmax] 的有效范围区间,以及所有差分范围 I Δ r I_{Δ r} IΔr = [ Δ r m i n , Δ r m a x ] Δr_{min}, Δr_{max}] Δrmin,Δrmax] 的区间。 在这种情况下设置范围作为示例,我们设置一个恒定的段数 b 并将间隔划分为 b 个段,每个段都有一个大小
  在这里插入图片描述
因此每个段都有一个间隔
公式3
其中 m 是区间索引。 现在,扫描中环 S k S^k Sk 中的所有点都可以分配到相应的区间 I r m I_r^m Irm 中以构建环中范围的直方图为
公式4
其中 h m h_m hm 的条目定义为
公式5
这表示落入同一个桶 I r m I^m_r Irm 中的点数。 按照类似的过程,可以将范围内的差分范围的直方图构建为 H Δ r k H_{Δr}^k HΔrk
  假设直方图是一个列向量,我们将 C 个直方图 H r k H_r^k Hrk H Δ r k H_{Δr}^k HΔrk堆叠如下,其中 C 是通道的编号,例如 Velodyne VLP-16 的 C = 16,或 Velodyne HDL-64E 的 C = 64, 
  公式6,7
  Rr 和 RΔr 都是扫描 S 的 C×b 单通道特征图,就像图像一样。 当携带 LiDAR 的自主系统在同一位置旋转其航向时,这种表示保持不变。
  除了航向旋转的不变性,范围或微分范围的离散化也实现了轻微的水平平移不变性。 例如,当 LiDAR 传感器未安装在系统的旋转中心时,由于传感器位置不同,对同一物体的测量值会略有不同。 在这种情况下,直方图可能仍然保持不变,从而引入了不变性。

2.特征学习和嵌入

    ~~~          ~~~~     手工制作的特征 Rr 或RΔr对航向旋转是不变的。但是对于由地面平整度引起的侧倾、俯仰偏差和垂直运动,这些特征可能很敏感。一个直观的情况是,当两次 LiDAR 扫描在同一个位置、相同航向、但高度略有不同时,可以通过环偏差引入方差,例如第一次扫描中环 1 扫描的物体为对应于第二次扫描中的环 2。因此,这种差异需要更复杂的相似性评估方法,如相关性,因此更耗时 [7]。此外,横滚和俯仰偏差带来的方差可以耦合,而不仅仅是环偏差。环境中的半静态物体,例如停放的汽车也会带来变化,这种环境变化是无法避免的,因为测绘会话和定位会话在时间上是不同的。为了解决这些问题,深度学习被用来进一步提高性能。
  如图 2 所示,我们使用 Rr 或RΔr 作为网络输入。 该网络由两个卷积层和一个全连接层组成。 采用 Siamese 架构 [31] 和对比损失 [32] 来训练 LocNet 的可学习部分,如图 2 所示。这两个 LocNet 被用作 siamese 网络中的 Side 1 和 Side 2,并将对比损失作为学习目标。 两侧的权重是共享的。 我们将可学习的卷积网络表示为 G。使用 R 表示 Rr 或RΔr ,我们有
公式8
图片2
其中 W 是学习参数。 对比损失是
公式9
公式10
其中 Y 是标签,Y = 1 表示扫描 S1 和 S2 是在同一位置捕获的,而 Y = 0 则不是。 边际值会影响不同对在训练步骤中的作用,用 λ 表示。 边际值越大,训练过程所需的时间就越长。 在本文中,大多数不同的表示对与相似对无法轻易区分,因此我们将 λ 设置为相对较高的值。 本质上,对比损失的目的是在训练步骤中尝试降低相似对的 DW 值并增加不同对的 DW 值。
  网络训练好后,成本应该最小化。 在测试步骤中,我们假设所有位置都与查询框相同,导致标签 Y = 1,则对比损失变为
  公式11
直觉上,如果假设是正确的,那么计算出的对比损失应该是一个非常低的值。 如果不是,损失应该是更高的值,因为在训练过程中只有原始对比损失的第二部分被最小化。 基于这一事实,我们可以将(11)视为相似性度量 Sim 为
公式12
这表明相似度实际上是两个学习特征之间的欧几里德距离。 因此,LocNet 将 LiDAR 嵌入到低维和欧几里德特征空间中,非常有效地实现实时性能。 神经网络中的池化操作也带来了表示的局部平移不变性,因为在这种情况下,池化后图像 R 的最大值可能保持不变。 这种轻微的不变性对应于滚动、俯仰和垂直偏差,那么在学习的特征空间中需要更好的性能。

3.无需人工标注的训练

    ~~~          ~~~~     神经网络的常规训练阶段需要标记 3 元组用于 siamese 架构训练,(S1, S2, Y ),其中手动注释标签。 这个过程需要巨大的人力成本。 在全局扫描匹配的背景下,由于数据是由在环境中连续移动的自主系统捕获的,因此开发了一种无监督地注释样本标签的想法。 通过应用 SLAM 技术,来自多会话的 3D LiDAR 扫描数据可以在统一的全局坐标系中对齐,为所有扫描生成姿势 {xi}。 根据位姿,当两个 LiDAR 扫描,比如 S1 和 S2,在同一个地方收集时,它们被视为一对正样本(S1,S2,1)。 否则,当 S1 和 S2 之间的姿态大于阈值 ρ 时,我们将这对视为负样本 (S1, S2, 0)。 因此,训练数据被采样并自动标记为以下过程
公式13
  这个过程在车辆行驶过程中产生了大量的数据,非常简单和快速,满足了训练神经网络的要求。
  显然,在一般数据集中,负样本的数量比正样本的增长快得多,因为正样本仅在车辆重新访问之前访问过的地方时才会出现。 因此,我们在训练过程中减少了大量的负样本以进行数据平衡。 在本文中,使用随机梯度下降并添加动量项来训练网络。

特征和指标地图创建

    ~~~          ~~~~     使用 LiDAR 传感器绘制环境地图时,会捕获一系列激光扫描和里程计数据。 通过使用 SLAM 或其他映射技术,每个 LiDAR 扫描都会在地图坐标中分配一个全局 2D 位姿。 这一步也用于自动数据注释。 因此,地图是全局一致图 M = {N, E}。 图的每个节点都分配有一个 LiDAR 扫描 Si、一个全局姿态 xi ∈ S E(3) 和一个由半手工学习生成的特征 fi 为
公式14
  为了有效地将查询扫描与地图中的相似扫描进行匹配,我们在特征上构建了一个 KD 树,它能够将搜索复杂度从 O(|M|) 降低到 O(log |M|)。 通过使用 xi 将每个扫描 Si 转换为地图坐标,我们可以通过对齐激光扫描来构建全局一致的点云图 P。 与 M 不同,点云图 P 是一个度量图,可用于几何对齐以在地图中产生准确的姿势。
  度量点云图P和拓扑特征图M通过扫描xi的全局位姿连接,形成一一对应。 因此,当查询扫描 St 与特征图 M 中的节点匹配时,它可以在以 xi 为中心的可能范围内注入度量图 P。 具体而言,范围包括平移、俯仰和滚转的轻微不确定性,但由于航向不变匹配而没有航向信息。

全局定位

    ~~~          ~~~~     贝叶斯递归估计器用于在地图中定位车辆,将当前 2D 姿态的分布公式化为
公式15
其中 Z1:t+1 = {z1, · · · , zt+1},η 是归一化器,p(xt+1|xt) 是运动模型,p(zt+1|xt+1) 是测量值 模型。 粒子滤波器是一种实现贝叶斯递归估计器的方法。 遵循蒙特卡罗定位[28]的思想,我们将提议分布定义为
公式16

然后通过一组从提议分布中采样的加权样本来近似当前姿势,
公式19
在全局定位的上下文中,初始姿态 p(x0) 的分布在整个地图中是均匀分布的。 运动模型由 LiDAR 里程计给出,这是通过应用 ICP 配准将当前扫描与前一次扫描对齐来实现的。 测量变量 zt+1 由地图中匹配扫描的姿态 {xi} 组成。 为了对所有匹配结果的测量进行建模,我们应用高斯混合模型 (GMM) 作为
公式20
其中 πi 是混合系数,N(xt+1; xi, Σi) 表示变量 xt+1 服从具有期望和方差 xi 和 i 的高斯分布。 由于当前查询扫描可能与地图中的多个扫描匹配,GMM 能够同时对多个假设进行建模,因此姿态分布不必是单模态分布。 获取当前扫描时,将其转换为特征
公式21
然后找到候选集
公式22
并且分配的姿势属于这个集合,如下所示:
公式23
如上所述,当前姿态 xt+1 位于以 xi 为中心但没有航向信息的范围内。 所以高斯分布被建模为
公式24
其中 dp 是投影到 xi 的 x - y 平面上的 xi 和 xt+1 之间的距离。 注意地表是局部平坦的,在特征匹配阶段,滚动、俯仰和高度的不确定性没有判别力。 测量模型仅包括水平运动的不确定性,在此阶段具有判别性。 此步骤还降低了状态空间的维度,从而减少了用于近似姿势分布的粒子数量。
为了确定混合系数 πi,我们参考当前扫描和地图中扫描之间的相似度 Sim。 πi 被指定为归一化的相似度以形成有效的概率密度
公式25
其中κ是控制相似度尺度的系数。 该模型遵循这样一个事实,即当两个地方的周围环境更相似时,它们之间的距离更小。 另一方面,当几个地方的环境相似时,假设通过πi更平衡,比单模态分布更接近真实的不确定性。 每个假设的方差是在训练阶段确定的。 对于映射 M 中的节点 xi,其对应的方差 i 由后续步骤分配。 首先,地图中的其他扫描按到该节点的距离排序。 然后,选择相似度高于 ρ 的第一个扫描,扫描附加的位姿表示为 x1→i。 最后,将 i 设置为 x1→i 和 xi 之间的 dp,由因子 γ 缩放,可以调整平滑度。
当粒子的多样性较低时,对粒子集采用重采样步骤,避免只有几个粒子被分配高权重。 粒子被统一分配给匹配步骤提出的多个假设,以减少对当前测量的依赖,以便在出现不正确的收敛时可以快速切换到更好的解决方案。 重新采样后,所有粒子的权重被重新初始化为相等的值 w1 = w2 = 。 . . = wK ,其中 K 是粒子数。
此外,由于测量模型具有较大的不确定性,因此该过程可能不会导致非常准确的位姿估计。 考虑到在地面上运行的自主系统,我们直接将地图中匹配扫描的俯仰、滚动和高度分配给当前位姿,因为这些值应该是局部平滑的。 为了进一步改进估计,我们在粒子集中在一个姿势时进行ICP,这通过粒子的方差和粒子的权重来反映。 这意味着当收敛发生时,粒子滤波器提供的位姿是 ICP 的一个很好的初始值。 当 ICP 将当前扫描与具有高内点和小距离的度量图 P 对齐时,意味着找到了令人满意的全局 3D 姿态。 在后面的步骤中,可以停止粒子滤波,也可以运行更多的步骤来测试ICP结果与粒子滤波结果的一致性,从而保证更高的置信度。

可借鉴的地方:

1.在全局定位之前先进行位置识别,后再进行粒子滤波。
2.再进行位置识别时可以优化匹配算法
3.可以将粒子收敛时的位姿作为ICP的初始位姿

1.可观察性

    ~~~          ~~~~     与之前的全局定位方法中,测量模型约束姿势的所有维度不同,我们的测量模型仅约束姿势的部分维度(仅限位置)。 由于从匹配的地图中复制了俯仰、滚转和高度,因此这些值被认为是可观察的并且相对准确。 因此,我们只讨论航向的可观察性,导致系统简化,即独轮车模型。 请注意,我们暂时滥用了这里的符号,使用 x 和 y 作为系统的位置,h 作为航向角。 连续时间模型表述为
公式26,27,28
其中 f (x, y, θ) 为零; v 和 ω 是运动 u 的速度和角速度。 在定义的系统上,我们有以下 Lie 导数为
公式29
公式30,31,32
其中 g1 和 g2 分别表示 g(x, y, θ) 中的第一列和第二列。 这些向量跨越观察空间
公式33
那么我们有 O 的梯度为
公式34
满足 rank(dO) = 3,即状态空间的维度。 根据可观察性等级条件[33],独轮车模型的状态因此是可观察的。 因此,通过仅位置测量,可以最终确定系统的航向,这意味着所提出的滤波器的可观察性以及对 ICP 配准的良好初始值。
值得讨论的是控制信号的特殊形式。 当系统直线前进时,角速度为 0,可观测性保持不变。 当系统开启 place 时,即速度为 0,则 rank(dO) < 3,这就失去了航向角的可观察性。 这两个结果的证明在附录中给出。 根据结果,系统在原地不停开启时无法定位自身,这在实践中是不可能的。 总之,所提出的全局定位算法有望在几乎所有情况下工作。

实验结果

地图匹配性能

    ~~~          ~~~~     在实验中,使用了两个数据集。一个是用于自动驾驶的公共数据集 KITTI [34],它提供 LiDAR 扫描 (Velodyne HDL-64E) 和 DGPS 收集的姿势的地面实况,其中进行 LiDAR 扫描。该数据集有一辆在各种环境中循环运行的车辆。多次访问一处所进行的扫描可用于测试所提出的 LocNet 的相似性建模。另一个名为 YQ 的数据集是在三天内在大学校园的测试车辆上自行收集的 [35],其中 LiDAR 扫描由 Velodyne VLP-16 捕获,如图 3 所示。同一会话中的环境,即 KITTI,包括微小的环境变化,而在我们的数据集中,存在典型的半静态对象,例如停车,在实际应用中更实用。所提出的算法在两个数据集上进行了评估,因此可以测试其对不同配置的 LiDAR 和不同机器人平台的兼容性。所有实验的计算平台是一台配备 Intel i5-5200U 2.20GHz 和 8G RAM 的笔记本电脑。该算法使用C++和Matlab实现,其中深度神经网络部分基于Caffe实现[36]。
  1.提议的 LocNet 在两个数据集上都实现了最佳性能。这个结果说明半手工特征比纯手工特征更有效地匹配扫描与地图数据库。学习阶段可以使用从环境中捕获的数据来捕获由不同因素引起的变化,而纯手工制作的特征无法针对环境适应性进行调整。
表2

2.所有方法在YQ 数据集上的性能都比在KITTI 数据集上的性能差。原因之一是制图会话和定位会话是在不同的日子里收集的,从而引入了半静态的环境变化。此外,YQ 数据集中有更多的非结构化对象,如树木和灌木,提供的几何信息不太准确。另一个原因是 YQ 中采用的 LiDAR 传感器中环的分辨率远低于 KITTI,这可能会破坏其他方法中法线或投影的计算,导致 KITTI 和 YQ 数据集的性能不一致。这个结果表明,在适应不同类型的传感器时,手工制作的特征需要手动调整参数,而我们的系统可以在没有人工干预的情况下自动训练,从而始终达到最佳性能。
  图片5
  3.最后,LocNet-r 在两个数据集上的表现略优于 LocNet-Δr。后者在学习阶段之前建立了前者的差分表示,失去了绝对值。稍有优势的原因之一是,在学习阶段,网络可以提取差分信息,但无法再恢复绝对值。

全局定位性能

    ~~~          ~~~~     根据地图匹配的结果,然后对系统进行 YQ 数据集的全局定位任务测试。 给定YQ Day 3-1的测试会话数据,我们随机选择一个时间步作为一个部分的起点,车辆位姿的分布在整个地图中被统一初始化。 然后车辆继续移动并收集传入的 LiDAR 帧,这些帧被馈送到系统以定位车辆。 记录地面实况与配准估计姿态之间的位置误差和航向误差,以证明方法的收敛性。 整个过程重复50次进行性能评估。 我们有三种粒子滤波器模型来进行比较:
  1.SG:单高斯测量模型,只考虑给出最佳相似度的匹配结果,通常应用于位置和航向都可以测量的场景。
  2.GMM:建议的基于 GMM (20) 的测量模型,将匹配结果建模为多个高斯分布。 在实验中,GMM 的系数由匹配的相似性度量(25)确定。
  3.GMM-k:模型类似于GMM。 但是每次都会在测量模型中考虑前 k 个匹配候选,从而导致恒定数量的高斯。
  定位误差的演化曲线如图7所示。位置和航向误差都收敛到一个很小的范围内,从而可以应用ICP来估计地图中系统的准确位姿,实现全局定位。该结果验证了姿态的可观察性分析是合理的,即使只给出了位置测量值。最终使用这三个模型的位置误差收敛到零。主要原因是在匹配结果中直接测量位置。用于估计位置的信息对于所有方法都是等效的。然而,对于航向误差曲线,由于可能不正确的测量,SG 下降明显慢于多假设方法。具体而言,航向是通过聚合仅连续位置测量值来估计的。对于SG,当最佳匹配结果不正确时,序列信息丢失,而对于GMM和GMM-k,如果正确结果小于阈值,或排在top-k,则仍将其考虑在测量中,为航向估计提供信息。最后,提出的 GMM 略好于 GMM-k,因为常数 top-k 倾向于在测量中涉及更多的不正确匹配,这可能会干扰滤波器推导出正确的估计,而 GMM 是 SG 和 GMM 之间的平衡-k 考虑更正确的匹配结果,并减少不正确的匹配结果。
图片7

结论

    ~~~          ~~~~     我们提出了一个全局定位系统,其输入是 3D LiDAR 扫描。该系统基于具有仅位置测量的粒子滤波器。关键的测量模型依赖于提出的 LocNet,这是一种深度神经网络,可以为欧几里德空间中的 LiDAR 扫描构建低维特征表示,从而实现高效搜索。在实验中,LocNet 与其他 LiDAR 扫描特征进行了地图扫描搜索的比较,在准确性和效率方面都取得了最佳性能。然后,整个系统在全局定位和姿态跟踪任务中得到验证。最后,评估计算成本,即使神经网络在低功耗 CPU 上运行,LocNet 也能提供最快的处理速度。将来,我们希望研究将语义信息嵌入到我们提出的系统中,然后对环境变化的敏感性有望降低。对于更具挑战性的长期自治,这些特征可以更易于解释和稳健。

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值