【论文笔记】--LiDAR-based Multi-Task Road Perception Network for Autonomous Vehicles

本文提出了一种名为LMRoadNet的轻量级、高效的多任务网络,用于自动驾驶汽车的无遮挡道路分割、密集道路高度估计和道路拓扑识别。网络在 SemanticKITTI 数据集上进行训练,并创建了MultiRoad多任务数据集。通过学习权重的损失函数平衡任务,优化网络性能。
摘要由CSDN通过智能技术生成

基于激光雷达的自动驾驶汽车多任务道路感知网络

摘要

  对于自动驾驶汽车来说,在动态驾驶环境中实时获取综合的静态道路信息是其重要要求。对周围道路的综合感知应该包括对遮挡下的整个道路区域的准确检测,以及道路的三维几何和拓扑类型,以便于自动驾驶的实际应用。为此,我们提出了一种轻量级、高效的基于lidar的多任务道路感知网络(LMRoadNet),可以同时进行无遮挡道路分割、道路地面高度估计和道路拓扑识别。为了优化该网络,在公共SemanticKITTI数据集的基础上,半自动化地建立了相应的多任务数据集MultiRoad。具体地说,我们的网络体系结构使用道路分割为主要任务,剩下的两个任务集中1 / 4范围内直接解码功能映射来自主要任务的不同尺度和阶段特征图谱,从而大幅度减少整体网络的复杂性而达到高性能。此外,采用每个任务具有可学习权的损失函数对神经网络进行训练,有效地平衡了每个任务的损失,提高了单个任务的性能。

introduction

  • 了解自主车辆附近道路的布局和形状是安全自动驾驶的基础。全面感知周围的道路不仅包括道路区域的准确检测,但还包括全局语义信息的道路拓扑结构,如一个十字路口的存在和类型,因为它定义了场景,提供上下文信息和限制未来交通参与者的运动。此外,为了方便自动驾驶汽车的实际应用,道路的3D信息也是必要的,因为地面并不总是平坦的。
  • 在道路区域检测方面,自由空间道路检测和道路边界检测是两个比较热门的领域。自由空间道路检测方法侧重于车辆可以行驶的无障碍道路区域,而其表示形式在一定程度上混淆了静态道路区域和道路上的动态对象,这对于复杂的驾驶场景规划是不够的。
  • 道路边界通常用Bezier样条、三次样条等曲线来表示,这并不能描述交叉口等复杂的道路形状。另一方面,道路的三维信息是控制车辆的
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值