解空间树搜索及最优解

本文总结了解空间树搜索算法,包括15谜问题和装载问题的解空间树示例。接着讨论了深度优先搜索与广度优先搜索的区别,深度优先搜索空间占用少,适用于内存限制情况,而广度优先搜索虽然占用空间大,但运行速度快。此外,文章对比了回溯法和分支限界法,前者寻找所有解,后者追求最优解。在处理最优化问题时,优先队列的分支限界法因能有效剪枝和提前找到最优解而表现出更高的效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

解空间树搜索算法总结
一、解空间树
15谜问题解空间树

在这里插入图片描述
装载问题解空间树
在这里插入图片描述
二、深度优先搜索与广度优先搜索算法有何区别
深度优先搜索法不全部保留结点,扩展完的结点从数据存储结构栈中弹出删去,在栈中存储的结点数就是解空间树的深度,因此它占用空间较少。所以,当搜索树的结点较多,用其它方法易产生内存溢出时,深度优先搜索不失为一种有效的求解方法。
广度优先搜索算法,一般需存储产生所有结点,占用的存储空间要比深度优先搜索大得多,因此,程序设计中,必须考虑溢出和节省内存空间的问题。但广度优先搜索法一般无回溯操作(即入栈和出栈的操作),所以运行速度比深度优先搜索要快些。
三、回溯与分支限界区别
回溯法以深度优先的方式搜索解空间树T,而分支限界法则以广度优先或以最小耗费优先的方式搜索解空间树T。
它们在问题的解空间树T上搜索的方法不同,适合解决的问题也就不同。一般情况下,回溯法的求解目标是找出T中满足约束条件的所有解的方案,而分支限界法的求解目标则是找出满足约束条件的一个解,或是在满足约束条件的解中找出使某一目标函数值达到极大或极小的解,即在某种意义下的最优解。
相对而言,分支限界算法的解空间比回溯法大得多,因此当内存

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值