基础知识
线性空间的理解
定义:又叫向量空间,是一个对加法和乘法封闭的空间,也就是该空间的所有向量都满足乘一个常数后或者和其它向量相加后后仍然在这个空间里。进一步可以理解为该空间中的所有向量满足加法和数乘的组合封闭。线性空间一定包含零向量。
引入的目的:为了研究线性方程组有无解,有多少解,以及有无穷多解时解集的结构
待补充:回答三个点——维数对应着生成空间的线性无关向量个数;定义运算数乘和加法;运算具备完备性
8条运算规则:
矩阵行列式的意义
经过矩阵变换后,平面单位面积的缩放倍数。
特别的:当矩阵行列式为0,说明它将原空间线性变换后压缩为一条线或一个点(二维情况下),即使原空间维度降低。这也解释了为何矩阵列向量线性相关时,经过它的线性变换后,原空间发生维度衰减。它的行列式为0。
特别的:当行列式为负数,表示矩阵的线性变换将原空间的定向发生了改变,如平面翻转。更为直观的就是变换后坐标轴的相对位置发生了变换。(三维空间下,一般情况下建系是符合右手定则的,若线性变换后,任然满足右手定则,则行列式一定为正,若不能满足右手定则,即变成了左手定则,则称空间发生了定向改变,行列式为负)。但行列式的绝对值任然表示面积的缩放比例。
行列式就是关于“面积”的推广。他就是在给定一组基下,N个向量张成的一个N维广义四边形的体积。这就是行列式的本质含义。2-FORM代表的是平面内的面积;3-FORM自然而然就是3维空间内的体积;4-FORM是4维空间里的超体积。以此类推。而实际上,由上我们已经看到,将这些矢量在给定的基坐标下写成矩阵(必定是方阵),矩阵的行列式就是对应的面积(体积)。记空间的维度为N,给定一组矢量,什么是他们线性无关性?我们下面将说明,一组矢量的线性相关性本质上,是描述他们所张成的广义平行四边形体积是否为NULL(零)。我们仍然从最简单的2维空间出发。如果两个2维空间的向量是线性相关的,那么就是说,其中一个与另外一个共线,也就是说,他们所张成的四边形,面积是零。反之,如果线性无关,则不共线,则面积不为零。同理,如果三个三维空间的向量是线性无关的,那么他们三者就不共面。因此他们所张成的平行六面体,体积不是零。更进一步地,我们知道,二维空间如果给定三个向量,他们必定共面(二维空间内不可能存在一个“体积”),因此他们必定线性相关。推而广之,我们不难理解,为什么一个维度为N的空间内,任意一组M个向量(M>N)必定线性相关了:因为维度大于空间维度的超平形四边体不存在。
由此我们得到一个一一对应的关系:N个向量线性无关 == 他们所张成的N维体体积不为零;反之,如果N个向量线性相关,那么他们所张成N维体,体积为零。线性无关矢量组成的矩阵的行列式不为零;线性相关矢量组成的矩阵的行列式必为零。
所谓一个线性变换的秩,无非就是变换后,还能保持非零体积的几何形状的最大维度。所以说,三体中的终极必杀,其实也就是一个行列式为0,秩比维度少1的一个线性变换而已。
行列式的计算方法
1. 对角线法:适用于二、三阶行列式
2. 代数余子式法
3. 等价转化法:即将行列式转化为上三角行列式
4. 逆序数法(定义法):最基础的方法,使用起来更为复杂
5. 特征值法:直接计算行列式对应的矩阵的特征值,再计算特征值的乘积即可得到相应的行列式的值
矩阵的意义
将空间基向量线性变换后的向量坐标用一个矩阵表示,如[x1,x2;y1,y2],它的列向量分别表示两个基向量变换后的坐标。那么任意向量与这个矩阵的乘法(二维空间内)就是这个向量在这个矩阵描述的线性变换后的向量坐标。若线性变换后的基向量线性相关,即矩阵的列向量相关,则原空间会被挤压丢失维度。
矩阵是一种空间的线性变换,每一个列都看成原空间的一个基向量的变换后的坐标(向量)。
矩阵的秩的含义?
1) 基本概念:
矩阵的秩就是矩阵中不等于0的子式的最高阶数。
行阶梯型矩阵的秩等于其非零行的行数。
2) 与向量组的关系:
矩阵的秩等于它列向量组的秩,也等于它行向量组的秩。
向量组的秩定义为向量组的极大线性无关组所含向量的个数。
3) 与向量空间的关系(几何意义):
任何矩阵的行空间的维数等于矩阵的列空间的维数等于矩阵的秩。
4) 与线性方程组解的关系:
定理4.10: 设A是以m*n矩阵,若R(A)=r<n则齐次线性方程组Ax=0有基础解系,且每个基础解系都含n-r个解向量
5) 与线性变换的关系:
所谓一个线性变换的秩,无非就是变换后,还能保持非零体积的几何形状的最大维度。
有时候,虽然A并不能保持把空间一组最大数目矢量的线性无关性,但它能保证一组更少数目矢量的线性无关性。这个数目往往少于A的维度(或者说,线性空间的维度),这个数目就叫做线性变换A的秩。
例如,一个秩为2的三乘三矩阵A。因为秩小于3,那么任何一个3维六面体经过他的变换后,体积都为零(退化一个面):但存在一个面积不为零的面,在变换之后还可以是一个非零面积的面。
6) 研究秩的意义:
1. 可以在上述提到的关系中作为解决问题的应用。
2. 用于多维信号特征处理降维、信道状态信息(Channel State Information,CSI)中的秩指示(Rank Indicator,RI)
线性相关的含义?
公式定义:
定义4.3:设a1,a2,…,an都为n维向量,若存在一组不完全为零的k1,k2,...,kn使k1a1+k2a2+…+knan=0,则称向量组a1,a2,…,an线性相关;否则,称向量组a1,a2,...,an线性无关。
几何意义:
一组矢量的线性相关性,本质上是描述他们所张成的广义平行四边形体积是否为零。N个向量线性无关<=>他们所张成的N维体体积不为零。于是有:线性无关矢量组成的矩阵的行列式不为零;线性相关矢量组成的矩阵的行列式必为零。
我们仍然从最简单的2维空间出发。如果两个2维空问的向量是线性相关的,那么就是说,其中一个与另外一个共线,也就是说,他们所张成的四边形,面积是零。反之,如果线性无关,则不共线,则面积不为零。
同理,如果三个三维空间的向量是线性无关的,那么他们三者就不共面。因此他们所张成的平行六面体体积不是零。
更进一步地,我们知道,二维空间如果给定三个向量,他们必定共面(二维空间内不可能存在一个“体积”),因此他们必定线性相关。推而广之,我们不难理解,为什么一个维度为N的空间内,任意一组M个向量(M>N)必定线性相关了:因为维度大于空间维度的超平形四边体不存在。
行列式的含义
1) 基本概念
所有取自不同行不同列的n个元乘积的代数和:
其中求和指标j1,j2,...,jn取遍1,2,...,n所有n阶排列。共有n!项求和。
2) 本质含义(几何意义)
行列式就是在给定一组基下,N个向量张成的一个N维广义四边形的体。2阶行列式代表的是平面内的面积;3阶行列式自然而然就是3维空间内的体积;4阶行列式是4维空间里的超体积。
3) 与线性映射的关系
A的行列式如果不为零,则代表这个变换后,N维体的体积不是NULL。又结合线性无关与体积的性质,我们可以说:
如果A的行列式不为零,那么A可以把一组线性无关的矢量,映射成一组新的,线性无关的矢量;A是可逆的(一对一的映射,保真映射,KERNEL 是{0})
如果A的行列式为零,那么A就会把一组线性无关的矢量,映射成一组线性相关的矢量;A就不是可逆的(非保真映射,KERNEL不是{0}。我们可以研究他的陪集)
如果A的行列式为负数,那么A将会改变原N维体体积的朝向。
从线性无关到线性相关,其中丢失了部分信息,因此这个变换显然就是不可逆的 线性是否无关和所张成N维体的体积有直接关系,这个体积值又与A的行列式有关。因此我们就建立了A的行列式与其是否可逆的几何关系。
举例说明,我们假设A是一个3维的矩阵。如果映射前,有一组三个线性无关的矢量,我们知道它们张成的体积不是0;经过映射后,他们对应的新矢量也能张成一个平行六面体,那么这个平行六面体的体积就是原体积乘以A的行列式。
显然,如果A的行列式是0,那么变换后的新”平行六面体”的体积将不可避免的也是0。根据上文的结论,我们有:变换后的这一组新矢量线性相关。
结论:线性变换A的行列式是否为零,就代表了其映射的保真性,也即,能不能把一组线性无关的矢量变换成另一组保持无关性的矢量。
矩阵的特征值与特征向量有什么关系?
解答:
- 定义:设A为n阶实方阵,如果存在某个数λ及某个n维非零列向量η,使得Aη=λη,则称λ是方阵A的一个特征值,η是方阵A的属于特征值的一个特征向量。 eigenvalue & eigenvector
- 一个特征值可能对应多个特征向量,一个特征向量只能属于一个特征值;
- 属于不同特征值的特征向量一定线性无关;
- 设λ是n阶方阵A的一个k重特征值(λ为特征方程的k重根),对应于λ的线性无关的特征向量的最大个数为Ɩ,则k≥Ɩ,即特征值λ的代数重数不小于几何重数。
理解:
- 从几何意义来说:矩阵乘法本质上就是一种变换,主要发生旋转、伸缩的变化,如果矩阵对某一个向量或某些向量只发生伸缩而不旋转(仍保持原有的方向),那么这些向量成为这个矩阵的特征向量,伸缩的比例就是特征值。
- 从运动的物理意义来说:特征向量在一个矩阵的作用下做伸缩运动,伸缩的幅度由特征值确定,若特征值>1,所有属于此特征值的特征向量身形暴涨;特征值如果处于0~1之间,身形猛缩;特征值如果<0,反方向向0点那边缩过去了。如果把矩阵看作是位移,那么特征值=位移的速度,特征向量=位移的方向。
- 总结一下,可以说矩阵A的信息可以由其特征值和特征向量来表示,特征值表示这个向量有多重要,而特征向量表示了这个矩阵是什么。
应用:
- 图像处理--著名的图像处理中的PCA方法,选取特征值最高的k个特征向量来表示一个矩阵,从而达到降维分析+特征显示的方法,还有图像压缩的K-L变换。再比如很多人脸识别,数据流模式挖掘分析等方面。
- 分类问题
- 性质
- 只有方阵才有特征值和特征向量
- 方阵总有特征值,因为总有特征多项式(特征方程),但不是所有方阵都有实数特征解
- 实方阵一定有实数特征解
- 不同特征值对应的特征向量是线性无关的
- 对于实对称矩阵或埃尔米特矩阵来说,不同特征值对应的特征向量必定正交(相互垂直)
逆矩阵的求法
- 利用定义求逆矩阵
- 初等变换法(AE)-->(EA-1)
- 伴随矩阵法:二阶简便,三阶及以上计算量大且需要AA-1=E来验证
- 分块矩阵求逆法:准对角矩阵、准三角形矩阵、
- 利用线性方程组求逆矩阵
矩阵可逆的性质
- 若A是可逆矩阵,则其逆矩阵唯一
- 可逆矩阵一定是方阵
- (A⁻¹)⁻¹=A
- 一个数乘和一个矩阵的积的逆等于这个数的倒数乘以这个矩阵的逆:(kA)⁻¹=A⁻¹/k
- (AB)⁻¹=B⁻¹A⁻¹
- 矩阵A可逆,那么A的转置矩阵也可逆,且A的转置矩阵的逆,等于A的逆的转置:(Aᵀ)⁻¹=(A⁻¹)ᵀ
- (Aᵏ)⁻¹=(A⁻¹)ᵏ
- A矩阵逆的行列式,等于,A矩阵行列式的倒数:|A⁻¹|=|A|⁻¹
克拉默法则
有n个方程的n元线性方程组Ax=b的系数行列式D=|A|≠0,则线性方程组有唯一解,且xj=Dj/D,j=1,2,...,n。
部分组和拓展组之间的关系
- 如果一个向量组的某个部分组线性相关,则其任一部分组也线性相关。若向量组线性无关,则其部分组也线性无关。
- 设有两个向量组
若向量组T1线性无关,则向量组T2也线性无关;反之,若向量组T2线性相关,则向量组T1也线性相关。
向量组等价
极大线性无关组
- 定义:设向量组T的一个部分组a1,a2,...,ar满足:a1,a2,...,ar线性无关;向量组T中每一个向量都可由a1,a2,...,ar线性表示。则称a1,a2,...,ar是向量组T的一个极大线性无关组,简称极大无关组。、
- 极大性:向量组的极大线性无关组是该向量组的所有线性无关部分组中含向量最多的向量组
- 极小性:向量组的极大线性无关组是所有与该向量组等价的部分组中含向量最少的向量组
三种初等变换
倍乘、互换、倍加
初等矩阵
由单位矩阵经过一次初等变换得到的矩阵称为初等矩阵。三种初等变换对应了三种初等矩阵:倍乘初等矩阵、互换初等矩阵、倍加初等矩阵。
初等矩阵的重要性质
- 初等矩阵的转置仍是初等矩阵
- 因为初等矩阵的行列式都不为零,故所有初等矩阵都是可逆矩阵,且逆矩阵都是相同类型的初等矩阵
- 可逆矩阵可以表示为有限个初等矩阵的乘积,设A是可逆矩阵,有A=P1P2P3...Pn
- 对矩阵进行初等行变换,相当于矩阵左乘相应的初等矩阵;对矩阵进行初等列变换相当于矩阵右乘相应的初等矩阵。
- 重要推论:可逆矩阵一定可以经过有限次初等变换化为同阶单位矩阵。因此欲对任意可逆矩阵A进行初等矩阵分解,可以反向操作,先通过初等变换将其转为E,即找出APs-1...P2-1P1-1=E,再得到分解结果A=P1P2P3...Pn。
奇异矩阵
-
定义
当|A|=0时,A称为奇异矩阵,否则称非奇异矩阵,由上面两定理可知:A是可逆矩阵的充分必要条件是|A|≠0,即可逆矩阵就是非奇异矩阵
-
判断
(1)看这个矩阵是不是方阵(即行数和列数相等的矩阵。若行数和列数不相等,那就谈不上奇异矩阵和非奇异矩阵)。
(2)看此方阵的行列式|A|是否等于0,若等于0,称矩阵A为奇异矩阵;若不等于0,称矩阵A为非奇异矩阵。
(3)由|A|≠0可知矩阵A可逆,可以得出另外一个重要结论:逆矩阵就是非奇异矩阵,非奇异矩阵也是可逆矩阵。如果A为奇异矩阵,则AX=0有无穷解,AX=b有无穷解或者无解。如果A为非奇异矩阵,则AX=0有且只有唯一零解,AX=b有唯一解。
-
特征
(1)一个方阵非奇异当且仅当它的行列式不为零。
(2)一个方阵非奇异当且仅当它代表的线性变换是个自同构。
(3)一个矩阵半正定当且仅当它的每个特征值大于或等于零。
(4)一个矩阵正定当且仅当它的每个特征值都大于零。
奇异值(Singular Value)
-
定义
奇异值分解:A 将一组正交基转化为另一组正交基
一个矩阵越“奇异”,越少的奇异值蕴含了更多的矩阵信息,矩阵的信息熵越小;也可以理解为,越“奇异”,其行向量彼此越线性相关,矩阵所携带的信息自然越少。
奇异值分解实际上把矩阵的变换分为了三部分:旋转、拉伸和投影(方阵没有投影)。先旋转,没有形变;再进行拉伸,奇异值分别为椭圆的长轴和短轴;最终被旋转到最终的位置,这一过程也没有发生形变。所以奇异值决定了形变,大小决定在形变中的重要性
矩阵的物理意义就是空间变换,SVD就是分解,将一个复杂的变换分解为三个简单的基本变换。而奇异值的大小代表了相应奇异向量的放缩程度。奇异值越大,则此奇异向量对最后的空间影响越大。因此可以用SVD进行压缩图像或者去噪。
-
特征值分解和奇异值分解的区别
- 适用条件:特征值分解必须是可对角化矩阵(所以必须是方阵。n阶方阵可对角化的定义是相似于一个对角矩阵,充要条件是A有n个线性无关的特征向量),奇异值分解则适用于任意矩阵。
- 特征值/奇异值的个数:特征值个数与矩阵的秩没有必然关系,n阶实对称矩阵的非零特征值个数等于矩阵的秩;非零奇异值个数等于矩阵的秩。
- 几何意义:特征值表示存在某个向量使得矩阵A对应的线性变换作用于向量x时,等价于对该向量组做了比例系数维特征值的伸缩变换;而奇异值表示矩阵A的列向量的空间分布情况,通过分析数值较大的奇异值有多少个即可,很像最小二乘法。特征向量描述的是矩阵的方向不变作用(invariant action)的向量;奇异向量描述的是矩阵最大作用(maximum action)的方向向量。
-
应用:
- 图像处理:把图片转为矩阵,通过丢弃不重要的奇异值,来减少处理量,进行压缩(咋听着和我的实习那么像。。。DFT和SVD的联系?区别?后续待补充);或者从矩阵中找到最大的奇异值,从而得到数据中最重要的特征。
- 统计学,筛选重要的变量。主成分分析(PCA)、推荐系统(如Netflex的电影推荐系统)
面试真题
成电
矩阵的秩物理意义?
- 基本概念:
矩阵的秩就是矩阵中不等于0的子式的最高阶数;行阶梯型矩阵的秩等于其非零行的行数。
- 与向量组的关系:
矩阵的秩等于它列向量组的秩,也等于它行向量组的秩;向量组的秩定义为向量组的极大线性无关组所含向量的个数。
- 与向量空间的关系(几何意义):
任何矩阵的行空间的维数等于矩阵的列空间的维数等于矩阵的秩。
- 与线性方程组解的关系:
设A是m×n矩阵,若R(A)=r<n,则齐次线性方程组AX=O有基础解系,且每个基础解系都含n-r个解向量。
- 与线性变换的关系:
所谓一个线性变换的秩,就是变换后,还能保持非零体积的几何形状的最大维度。有时候,虽然A不能保持空间一组最大数目矢量的线性无关性,但它能保证一组更少数目矢量的线性无关性,这个数目往往少于A的维度,这个数目就叫做线性变换A的秩。
东南
n阶矩阵可对角化的充要条件?
充要条件:矩阵A有n个线性无关的特征向量
对角化:若方阵A相似于对角矩阵,即存在可逆矩阵P和对角矩阵D,有A = PDP-1,则称A可对角化。
矩阵可逆(说出2个以上判断方法)
11种
- 矩阵的行列式的值不为0,则可逆
- 矩阵的秩为n,则可逆
- 定义法:若存在一个矩阵B,使矩阵A使得AB=BA=E,则矩阵A可逆,且B是A的逆矩阵
- 对于齐次方程AX=0,若方程只有零解,那么这个矩阵可逆,反之若有无穷解则矩阵不可逆;
- 对于非齐次线性方程AX=b,若方程只有特解,那么这个矩阵可逆,反之若有无穷解则矩阵不可逆。
- 若矩阵A的行向量或列向量线性无关,则A的行向量或列向量相互不成比例,则A的行列式不等于0,所以A可逆。
- 从矩阵等价的角度出发:矩阵A可逆,则A与单位矩阵E等价
- 从矩阵初等变换的角度出发:若可逆,则A可以表示为若干个初等矩阵的乘积
- 从向量的线性表示的角度出发:若可逆,则Rn中任意一个向量都可以由A的列向量线性表出
- 从特征值的角度出发:若可逆,则A的特征值全不为0;
- 从矩阵正定出发:若可逆,则ATA是正定矩阵
特征值
如上
特征向量分解?
2*2的行列式怎么算
Ad-bc
矩阵的秩
如上
矩阵的特征值、特征向量、还有一个奇异值
如上
AX=0的条件是什么
先看A的秩是什么,如果秩的数值小于未知数x的数量,那么AX=0始终有非零解;如果A的秩等于未知数的个数,那再看A的行列式等不等于0,若|A|=0,则有非零解;若|A|不等于0,就没有非零解
中科大
线性方程组的解,Ax=b,Am×n分别为长矩阵(m>n)和扁矩阵(n>m)?怎么确定哪个解是最优解?
线性方程组Ax=b的解:比较系数矩阵的秩与增广矩阵的秩。
线性空间
上科大
矩阵的奇异值分解
中间是对角矩阵,左右是正交矩阵
矩阵的秩、矩阵的行向量组的秩、矩阵的列向量组的秩的关系?(相等)如何证明?
矩阵的秩就是矩阵的非零子式的最高阶数;
矩阵的秩等于矩阵的行向量组的秩,也等于矩阵的列向量组的秩;
矩阵的秩等于矩阵行空间的秩,也等于矩阵列空间的秩。
特征值的概念
如上
秩的概念
如上
线性方程组的概念
- 定义:是各个方程关于未知量均为一次的方程组,当常数项为0即为齐次线性方程。
- 何时有解?有多少解?:如下
- 解法:
- 克莱姆法则,给出了一类特殊线性方程组解的公式。n个未知量的任一齐次方程组的解集均构成n维空间的一个子空间。(特殊/前提:一是方程的个数要等于未知量的个数,二是系数矩阵的行列式要不等于零。)用克莱姆法则求解方程组实际上相当于用逆矩阵的方法求解线性方程组,它建立线性方程组的解与其系数和常数间的关系,但由于求解时要计算n+1个n阶行列式,其工作量常常很大,所以克莱姆法则常用于理论证明,很少用于具体求解。
- 矩阵消元法,将线性方程组的增广矩阵通过行的初等变换化为行简化阶梯形矩阵 ,则以行简化阶梯形矩阵为增广矩阵的线性方程组与原方程组同解。当方程组有解时,将其中单位列向量对应的未知量取为非自由未知量,其余的未知量取为自由未知量,即可找出线性方程组的解。
- 意义:线性方程组是最简单也是最重要的一类代数方程组。大量的科学技术问题,最终往往归结为解线性方程组,因此线性方程组的数值解法在计算数学中占有重要地位。
线性相关和非线性相关
如下
中山大学
线性相关的概念和性质
如下,两种判别方法
矩阵的秩
如上
上交
正定矩阵的概念(positive definite matrix)
- 定义:
(1)广义定义:设M是n阶方阵,如果对任何非零向量z,都有zTMz> 0,其中zT表示z的转置,就称M为正定矩阵。
(2)狭义定义:一个n阶的实对称矩阵M是正定的的条件是当且仅当对于所有的非零实系数向量z,都有zTMz> 0。其中zT表示z的转置。
- 对称正定矩阵:
-
半正定矩阵:
所有特征值非0,相当于正定矩阵的拓展
-
性质:
(1)正定矩阵的行列式恒为正;
(2)实对称矩阵A正定当且仅当A与单位矩阵合同;
(3)若A是正定矩阵,则A的逆矩阵也是正定矩阵;
(4)两个正定矩阵的和是正定矩阵;
(5)正实数与正定矩阵的乘积是正定矩阵。
-
对于n阶实对称矩阵A,下列条件是等价的:
(1)A是正定矩阵;
(2)A的一切顺序主子式均为正;
(3)A的一切主子式均为正;
(4)A的特征值均为正;
(5)存在实可逆矩阵C,使A=C′C;
(6)存在秩为n的m×n实矩阵B,使A=B′B;
(7)存在主对角线元素全为正的实三角矩阵R,使A=R′R。
-
充要条件:
-
判定的方法:
根据正定矩阵的定义及性质,判别对称矩阵A的正定性有两种方法:
-
应用:
对于具体的实对称矩阵,常用矩阵的各阶顺序主子式是否大于零来判断其正定性;对于抽象的矩阵,由给定矩阵的正定性,利用标准型,特征值及充分必要条件来证相关矩阵的正定性。
可以用于将倾斜的椭圆排好,斜椭圆的轴分别是两个特征向量,两轴的长度由特征值决定,这也是称为主轴定理的原因。
当我们判断多元函数极值时,二次型会发挥巨大的威力,此时它对应的名称为Hessian矩阵(黑塞矩阵). 所谓Hessian矩阵,就是如下形式的矩阵(我们仍旧以f为例):
是一个对称矩阵,因为求偏导无先后。 矩阵就是用来帮助我们判定极值点的类型的工具:如果这个函数局部是一个抛物面的形状,那么它在此处一定取到极值:抛物面开口向上,是正定矩阵,是极小值;朝下就是极大值,是负定矩阵.
北邮
行列式公式所涉及的概念(排列、逆序)
克莱姆法则,适用解决问题?
基于线性方程组的解空间理论,线性方程组有唯一解当且仅当有效方程数等于未知数的个数,克莱姆法则是其中一种求解线性方程组唯一解的方法。
- 克莱姆法则的重要理论价值:
1)研究了方程组的系数与方程组解的存在性与唯一性关系;
2)与其在计算方面的作用相比,克莱姆法则更具有重大的理论价值。(一般没有计算价值,计算量较大,复杂度太高)
- 应用克莱姆法则判断具有N个方程、N个未知数的线性方程组的解:
1) 当方程组的系数行列式不等于零时,则方程组有解,且具有唯一的解;
2) 如果方程组无解或者有两个不同的解,那么方程组的系数行列式必等于零;
3) 克莱姆法则不仅仅适用于实数域,它在任何域上面都可以成立。
- 克莱姆法则的局限性:
1)当方程组的方程个数与未知数的个数不一致时,或者当方程组系数的行列式等于零时,克莱姆法则失效;
2)运算量较大,求解一个N阶线性方程组要计算N+1个N阶行列式。
判断矩阵是否可逆的方法?(四种)
如上
矩阵的三种重要关系,其联系?(合同、相似、等价)
三种关系:等价、相似、合同。前者依次包含后者
定义:
几何意义
相似矩阵:同一个线性变换在不同的基下的表达形式。
相同行列式:相似矩阵的线性映射,膨胀系数不变
相同的秩:相似矩阵的线性映射,对空间的维数的影响一致
相同的特征方程:相似矩阵的线性映射,对向量的主变化方向和变化速度影响一致
性质
等价矩阵:
a.具有相同的秩;b.具有相同的相似标准型;c.列(行)向量具有相同的相关性;d.任意矩阵都等价于它的标准型
相似矩阵:
a.具有相同的特征值;b.具有相同的行列式;c.迹相等;d.具有相同的特征多项式
相似对角化
对于矩阵A,如果存在可逆矩阵P,使得P-1AP为对角矩阵,则称A可相似对角化。如果A满足如下条件中的一个,则A可相似对角化:
a.矩阵A有n个线性无关的特征向量;
b.矩阵A有n个不相同的特征值;
c.矩阵A的k重特征值对应有k个特征向量。
**注意:A能否对角化与A是否可逆或A的秩之间没有关系,如A=[2,2;2,2]为实对称矩阵,一定可以对角化,但秩为1,它不可逆。
两种重要的特殊矩阵(?)
- 正交矩阵
定义:transpose(A)*A=A*transpose(A)=I。正交矩阵具有如下的性质:
a). transpose(A)=inv(A);
b). det(A)=1或者det(A)= —1;
c).如果A和B都是正交矩阵,则AB和BA都是正交矩阵;
d). A的行(列)向量组为标准正交向量组。
e).transpose(A)*A=A*transpose(A)=I
f).正交变换不改变内积,y=Ax,则(y1,y2)=(Ax1,Ax2)=(x1,x2),因此也就不改变向量的长度和夹角,所以正交变换可以保持图形不变。
- 对称矩阵
定义:transpose(A)=A。对称矩阵具有如下性质:
a).如果A和B都是对称矩阵,则A+B为对称矩阵;AB对称的充要条件是AB=BA,即A,B可交换;
b).任意矩阵A,).transpose(A)*A和A*transpose(A)都是对称矩阵;
c).对于实对称矩阵,有如下特殊性质:
*特征值全为实数;
**不同特征值对应得特征向量彼此正交;
***一定存在正交矩阵C,使得transpose(C)*A*C=inv(C)*A*C为对角矩阵,且对角元为A的特征值,而C的列向量即为A的特征向量。
关系
- 这三种矩阵关系都是等价关系,其中等价关系是最弱的,两个矩阵相似或者合同,那么这两个矩阵一定等价;
- 相似与合同矩阵之间没有必然的联系,不能够相互推导;
- 若两个实对称矩阵是相似的,那么它们一定合同。
不变量 | 全系不变量 | |
等价 | 秩 | 秩 |
相似 | 行列式、特征多项式、特征值、迹、最小多项式、行列式因子、不变因子、初等因子 | 行列式因子、不变因子、初等因子 |
合同 | 秩、惯性系数 | 秩 |
- 等价(只有秩相同)–>合同(秩和正负惯性指数相同)–>相似(秩,正负惯性指数,特征值均相同),矩阵亲密关系的一步步深化。
- 相似矩阵必为等价矩阵,但等价矩阵未必为相似矩阵
-->PQ=E的等价矩阵是相似矩阵
- 合同矩阵必为等价矩阵,等价矩阵未必为合同矩阵
-->正惯性指数相同的等价矩阵是合同矩阵
- 合同矩阵未必是相似矩阵
- 相似矩阵未必合同
- 正交相似矩阵必为合同矩阵,正交合同矩阵必为相似矩阵
- 如果A与B都是n阶实对称矩阵,且有相同的特征根.则A与B既相似又合同
矩阵特征值、特征向量
如上
判断向量线性相关/无关的方法
如下
空间的概念
回答三个点:维数对应着生成空间的线性无关向量个数;定义运算数乘和加法;运算具备完备性
矩阵的秩的概念,研究其的意义(用于多维信号特征处理降维)
如上
浙大
矩阵求秩
如上
北航
矩阵求秩
如上
什么叫做矩阵的秩
如上
什么是线性相关什么是线性无关?
令向量组的线性组合为零(零向量),研究系数的取值情况,线性组合为零当且仅当系数皆为零,则该向量组线性无关;若存在不全为零的系数,使得线性组合为零,则该向量组线性相关。特别地,0向量和任意向量线性相关。
矩阵的秩的意义
如上
矩阵可逆的条件(invertible)
可逆概念:对于n阶矩阵A,如果有一个n阶矩阵B,使AB=BA=E,则说矩阵A是可逆的,并把矩阵B称为A的逆矩阵。
几个充要条件:
- A为满秩矩阵(即r(A)=n);
- A的特征值全不为0;
- A的行列式|A|≠0,也可表述为A不是奇异矩阵(即行列式为0的矩阵)。
- A等价于n阶单位矩阵;
- A可表示成有限个初等矩阵的乘积;
- 齐次线性方程组AX=0仅有零解;
- 非齐次线性方程组AX=b有唯一解;
- A的行(列)向量组线性无关;
- 任一n维向量可由A的行(列)向量组线性表示。
其实以上几个条件都是等价的......
线性方程组什么时候无解
假定对于一个含有n个未知数m个方程的非齐次线性方程组而言
- 若n<=m:
- 当方程组的系数矩阵的秩与方程组增广矩阵的秩相等且均等于方程组中未知数个数n的时候,方程组有唯一解;
- 当方程组的系数矩阵的秩与方程组增广矩阵的秩相等且均小于方程组中未知数个数n的时候,方程组有无穷多解;
- 当方程组的系数矩阵的秩小于方程组增广矩阵的秩的时候,方程组无解。
- 当n>m时:
当方程组的系数矩阵的秩与方程组增广矩阵的秩相等的时候,方程组有无穷多解;当方程组的系数矩阵的秩小于方程组增广矩阵的秩的时候,方程组无解。
对于一个含有n个未知数m个方程的齐次线性方程组而言,如果有效方程组个数小于未知数个数,叫做有非零解(多个解)。如果等于,叫做只有零解(唯一解)。用行列式的值detA来判断,如果detA=0,则有非零解(无穷多个解);如果detA≠0,则只有零解(只有唯一解)。
总结:无论是对于齐次线性方程组还是非齐次线性方程组,都可以通过矩阵的秩来做判断。
只要矩阵为满秩的,则必然只有唯一解
- 对于齐次线性方程组来说唯一解为0解
- 而非齐次线性方程组的唯一解就不一定了
如果矩阵不是满秩的
- 对于齐次线性方程组而言,则有无穷多解,故存在非零解。
- 对于非齐次线性方程组而言,有两种情况:
- 一种为系数矩阵的秩与增广矩阵的秩相同,则有无穷多解。
- 如果系数矩阵的秩小于增广矩阵的秩,则无解。
怎么判断线性相关线性无关
- 定义法:令向量组的线性组合为零(零向量),研究系数的取值情况,线性组合为零当且仅当系数皆为零,则该向量组线性无关;若存在不全为零的系数,使得线性组合为零,则该向量组线性相关。特别地,0向量和任意向量线性相关。
- 向量组的相关性质
- 当向量组所含向量的个数与向量的维数相等时,该向量组构成的行列式不为零的充分必要条件是该向量组线性无关;
- 当向量组所含向量的个数多于向量的维数时,该向量组一定线性相关;
- 通过向量组的正交性研究向量组的相关性;
- 通过向量组构成的齐次线性方程组解的情况判断向量组的线性相关性;线性方程组有非零解向量组就线性相关,反之,线性无关
- 通过向量组的秩研究向量组的相关性。若向量组的秩等于向量的个数,则该向量组是线性无关的;若向量组的秩小于向量的个数,则该向量组是线性相关的。
- 某个向量是其它向量的线性组合,则线性相关