tf中张量的合并于分割

张量的合并

  1. concat函数:concat函数用于合并张量,但不会产生新的维度,具体用法为 tf.concat([a,b],axis=x)
    其中a和b是两个张量(a,b除了合并的维度之外,其他维度必须相同),x代表在哪个维度上进行合并
    在这里插入图片描述
  2. stack函数:concat函数用于合并张量,会产生新的维度,具体用法为 tf.stack([a,b],axis=x)
    其中a和b是两个张量(a,b的所有维度必须相同),x代表在哪个维度上增加一个新的维度,并按这个新的维度合并
    在这里插入图片描述

张量的分割

  1. unstack函数:unstack函数用于分割张量,会消失一个已有的维度,具体用法为 tf.unstack(a,axis=x) 其中a是张量,x代表在哪个维度上消失一个维度,并按这个消失的维度分割
    在这里插入图片描述
  2. split函数:split函数用于分割张量,不会消失一个已有的维度,具体用法为 tf.split(a,axis=x)
    其中a是张量,x代表分割后维度的分配情况,数组形式代表具体每个维度分多少,数字形式代表按几均分这个维度
    在这里插入图片描述
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值