学会读取数据
#读取csv文件
df=pd.read_csv("C:\\Users\\Administrator\\Desktop\\data.csv",encoding="ANSI")
获取数据列名
#获取列名
feature_name=df.columns.values
print(feature_name)
取出某一列
#取出'时间'对应列
time=df['时间']
#'时间'列的索引为3
time=df.iloc[:,3]
循环时跳过异常(报错),继续下一次循环
form tqdm import tqdm
for w in tqdm(web): # tqdm是进度条
try:#如果没有报错,则执行下语句1
语句1
#否则执行except下的语句2,忽略错误并进入下一次循环
except OSError:
语句2
pass
continue
查找某个值对应的行
#查询“甘肃”对应的行数据,甘肃对应的列名为省份
df[df["省份"].isin(["甘肃"])]
给数据集列名重新命名
#给数据集df的列名重命名为'A'、 'B',、'C',df有3列
df.columns=['A', 'B', 'C']
获取数据维度,查看数据类型
#数据维度
df.shape
df.shape[0]
df.shape[1]
df.shape[2]
#数据类型
type(df)
两个dataframe数据集相减df1-df2
df_new = pd.concat([df1, df2, df2]).drop_duplicates(keep=False)
保存数据为csv文件
df.to_csv("C:\\Users\\Administrator\\Desktop\\数据名.csv")