离散数学概念

本文深入探讨了集合论中的关系概念,包括自反性、对称性、反对称性和传递性。等价关系和偏序关系作为特殊的关系类型,它们在数学和计算机科学中有广泛应用。等价关系如'=',偏序关系如'>'和'<'。文章还介绍了全序集的概念,即所有元素都能进行比较的集合。这些基础知识对于理解数据结构和算法至关重要。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、集合论与图论

1.关系

        定义:任意子集R称为A到B上的二元关系. 若(a,b) \in A \times B,则称a,b满足关系R,记作aRb;若(a,b) \notin A \times B则a,b不满足关系R.

自反性:\forall x \in X, (x,x) \in R, 记作xRx

对称性:\forall x,y \in X, if exists x Ry, then yRx

反对称性:        如果对于任意a,b属于X,if aRb and bRa , then a = b

传递性: 任意x,y,z 属于 X, if xRy and yRz, then xRz.      

等价关系:具有自反性,对称性和传递性

e.g ‘=’

有限集合上等价关系的个数(第二类斯特林数)

偏序关系:具有自反性,反对称性和传递性

e.g '>', '<', '包含于'

偏序集:<X, \leq> ,集合加比较运算符(偏序集中至少存在一组元素不可比较大小)

全序集:任意一组元素都可以比较.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值