拟合的思想是令绝对值的和最小(最小二乘)。
线性回归的思想是令残差和最小。
对于线性的理解
线性假定并不要求初始模型都呈严格的线性性关系(不一定是这样的形式,才是线性)。
自变量与因变量可通过变量变换而转化成线性模型。(可以把lnx替换为x)
例如以下这些方程都是线性的:
内生性与外生性
式子中的所代表的是所有与y相关,但未添加到回归模型中的变量,如果这些变量和我们已添加的自变量相关,则存在内生性。所以
必须与y不相关。如果遗漏了变量,则会导致内生性。
如果存在内生性则会对回归系数影响非常大,也就是说会导致回归系数估计不准确,就必须去寻找更多的自变量。
核心解释变量和控制变量
无内生性(no endogeneity)要求所有解释变量均与扰动项不相关。 这个假定通常太强,因为解释变量一般很多(比如,5‐15个解释变量), 且需要保证它们全部外生。 是否可能弱化此条件?答案是肯定的,如果你的解释变量可以区分为核心 解释变量与控制变量两类。
核心解释变量:我们最感兴趣的变量,因此我们特别希望得到对其系数的 一致估计(当样本容量无限增大时,收敛于待估计参数的真值 )。
控制变量:我们可能对于这些变量本身并无太大兴趣;而之所以把它们也 放入回归方程,主要是为了 “控制住” 那些对被解释变量有影响的遗漏因素。
在实际应用中,我们只要保证核心解释变量与𝝁不相关即可。
回归系数的求解运用stata软件。