多元正态分布的最大似然估计

先试着证明一些小结论(可能不规范)

先记p×p方阵 A A A满足,
A = ( a 11 a 12 ⋯ a 1 p a 21 a 22 ⋯ a 2 p ⋮ ⋮ ⋮ a p 1 a p 2 ⋯ a p p ) A= \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1p}\\ a_{21} & a_{22} & \cdots & a_{2p}\\ \vdots & \vdots & & \vdots\\ a_{p1} & a_{p2} & \cdots & a_{pp}\\ \end{pmatrix} A= a11a21ap1a12a22ap2a1pa2papp

矩阵的行列式对矩阵求导(分母布局)

因为行列式可以写为,
∣ A ∣ = a i 1 A i 1 + . . . + a i j A i j + . . . + a i p A i p |A|=a_{i1}A_{i1}+...+a_{ij}A_{ij}+...+a_{ip}A_{ip} A=ai1Ai1+...+aijAij+...+aipAip
所以有,
∂ ∣ A ∣ ∂ a i j = A i j \frac{\partial |A|}{\partial a_{ij}}=A_{ij} aijA=Aij
根据分母布局的原理,
∂ ∣ A ∣ ∂ A = ( A ∗ ) T \frac{\partial |A|}{\partial A}={(A^{*})}^T AA=(A)T

矩阵的逆对矩阵求导(分母布局)

首先逆矩阵的定义,
A A − 1 = I AA^{-1}=I AA1=I
直接两边对A求导,
A − 1 ∂ A ∂ A + A ∂ A − 1 ∂ A = O A^{-1}\frac{\partial A}{\partial A}+A\frac{\partial A^{-1}}{\partial A}=O A1AA+AAA1=O
直接就能得到,
∂ A − 1 ∂ A = − ( A − 1 ) 2 \frac{\partial A^{-1}}{\partial A}=-{(A^{-1})}^2 AA1=(A1)2

还有一些常见求导公式(不证明了)

这里 A A A为矩阵, x x x为向量。
∂ x T A x ∂ x = ( A T + A ) x \frac{\partial x^TAx}{\partial x} = (A^T+A)x xxTAx=(AT+A)x ∂ x T A x ∂ A = x x T \frac{\partial x^TAx}{\partial A} = xx^T AxTAx=xxT

多元正态分布参数的MLE估计值

首先,多元正态分布的公式为,
N ( μ , Σ ) = 1 ( 2 π ) p / 2 1 ∣ Σ ∣ 1 / 2 exp ⁡ ( − 1 2 ( x − μ ) T Σ − 1 ( x − μ ) ) N(\mu,\Sigma)=\frac{1}{{(2\pi)}^{p/2}}\frac{1}{{|\Sigma|}^{1/2}}\exp{(-\frac{1}{2}{(x-\mu)}^T\Sigma^{-1}{(x-\mu)})} N(μ,Σ)=(2π)p/21∣Σ∣1/21exp(21(xμ)TΣ1(xμ))
记有 n n n个样本, x 1 , x 2 , . . . . . . , x n x_1,x_2,......,x_n x1,x2,......,xn,似然函数为,
L ( μ , Σ ) = ∏ i = 1 n 1 ( 2 π ) p / 2 1 ∣ Σ ∣ 1 / 2 exp ⁡ ( − 1 2 ( x i − μ ) T Σ − 1 ( x i − μ ) ) L(\mu,\Sigma)=\prod_{i=1}^n{\frac{1}{{(2\pi)}^{p/2}}\frac{1}{{|\Sigma|}^{1/2}}\exp{(-\frac{1}{2}{(x_i-\mu)}^T\Sigma^{-1}{(x_i-\mu)})}} L(μ,Σ)=i=1n(2π)p/21∣Σ∣1/21exp(21(xiμ)TΣ1(xiμ))
对数似然函数为,
ln ⁡ L ( μ , Σ ) = − n p 2 ln ⁡ ( 2 π ) − n 2 ln ⁡ ∣ Σ ∣ − 1 2 ∑ i = 1 n ( ( x i − μ ) T Σ − 1 ( x i − μ ) ) \ln L(\mu,\Sigma)=-\frac{np}{2}\ln{(2\pi)}-\frac{n}{2}\ln{|\Sigma|}-\frac{1}{2}\sum_{i=1}^n{({(x_i-\mu)}^T\Sigma^{-1}{(x_i-\mu)})} lnL(μ,Σ)=2npln(2π)2nln∣Σ∣21i=1n((xiμ)TΣ1(xiμ))
分别对 μ \mu μ Σ \Sigma Σ求导,
∂ ln ⁡ L ∂ μ = ∑ i = 1 n Σ − 1 ( x i − μ ) = 0 \frac{\partial \ln L}{\partial \mu}=\sum_{i=1}^n{\Sigma^{-1}(x_i-\mu)}=0 μlnL=i=1nΣ1(xiμ)=0 ∂ ln ⁡ L ∂ Σ = − n Σ ∗ 2 ∣ Σ ∣ + 1 2 Σ − 2 ∑ i = 1 n ( x i − μ ) ( x i − μ ) T = 0 \frac{\partial \ln L}{\partial \Sigma}=-\frac{n\Sigma^*}{2|\Sigma|}+\frac{1}{2}\Sigma^{-2}\sum_{i=1}^n{(x_i-\mu){(x_i-\mu)}^T}=0 ΣlnL=2∣Σ∣nΣ+21Σ2i=1n(xiμ)(xiμ)T=0
上式可直接得到,
μ ^ = 1 n ∑ i = 1 n x i \hat{\mu}=\frac{1}{n}\sum_{i=1}^n{x_i} μ^=n1i=1nxi
下式可先化简,
n 2 Σ − 1 = 1 2 Σ − 2 ∑ i = 1 n ( x i − μ ) ( x i − μ ) T \frac{n}{2}\Sigma^{-1}=\frac{1}{2}\Sigma^{-2}\sum_{i=1}^n{(x_i-\mu){(x_i-\mu)}^T} 2nΣ1=21Σ2i=1n(xiμ)(xiμ)T
进而得到,
Σ ^ = 1 n ∑ i = 1 n ( x i − μ ^ ) ( x i − μ ^ ) T \hat{\Sigma}=\frac{1}{n}\sum_{i=1}^n{(x_i-\hat{\mu}){(x_i-\hat{\mu})}^T} Σ^=n1i=1n(xiμ^)(xiμ^)T

  • 0
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值