LAM:使用局部归因图理解和可视化超分网络以及介绍一篇盲图像超分辨率重构文章

本文探讨了如何通过LAM(LocalAttributionMaps)理解超分辨率网络的工作原理,关注感受野大小、多尺度特征以及注意力机制对性能的影响。研究者提出了一种结合预测概率梯度的归因方法,同时分析了基于自注意力的SwinTransformer在盲图像超分辨率中的应用及其效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

LAM:使用局部归因图理解和可视化超分网络

Interpreting Super-Resolution Networks with Local Attribution Maps (CVPR 2021)

School of Electrical and Information Engineering, The University of Sydney.
​
Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences.
  • 是不是只要加大感受野就能获得更好的性能呢?更大的感受野,或者多尺度的特征是否对于 SR 模型有效?

  • 为什么 Attention 或者 Non-local 的操作可以帮助提升 SR 性能?

预测概率对输入I的梯度

采用预测概率对输入I的梯度作为归因图

使用积分梯度 (Integrated Gradients)来做归因

所谓归因,简单来说就是对于给定的输入图片I 和模型S ,我们想办法指出I 的哪些分量对模型的决策有重要影响,或者说对 I 的各个分量的重要性做个排序,用专业的话术来说那就是 "归因"。

  • 假设输入的是I,还有一个基线图像I',模型是S,假设是SR模型,\alpha表示是一种插值参数,则I'+\alpha(I-I')表示了从基线图片I'到原始输入图片I的变化过程

  • 在LAM中,超分模型F再加上后面的检测器D就相当于了一个分类模型,输出 LR 图片的某个 patch 里面是否有特定的特征。就可以计算这个标量对于 LR 图片的积分梯度了,这也就是 LAM 的核心思想。

2、Degradation-Aware Self-Attention Based Transformer for Blind Image Super-Resolution(arxiv2023)

Immersive and Interactive Multimedia Lab, 
Nanjing University of Aeronautics and Astronautics, Nanjing
  • MOCO学习一个退化特征

  • 将这个退化特征用到了Swin transformer里面

  • 不同之处就是把D应用到了每一个RSTB模块里面

  • SwinIR

效果
  • 消融

  • 实验

  • 可视化

为了在Windows安装ADB工具,你可以按照以下步骤进行操作: 1. 首先,下载ADB工具包并解压缩到你自定义的安装目录。你可以选择将其解压缩到任何你喜欢的位置。 2. 打开运行窗口,可以通过按下Win+R键来快速打开。在运行窗口中输入"sysdm.cpl"并按下回车键。 3. 在系统属性窗口中,选择"高级"选项卡,然后点击"环境变量"按钮。 4. 在环境变量窗口中,选择"系统变量"部分,并找到名为"Path"的变量。点击"编辑"按钮。 5. 在编辑环境变量窗口中,点击"新建"按钮,并将ADB工具的安装路径添加到新建的路径中。确保路径正确无误后,点击"确定"按钮。 6. 返回到桌面,打开命令提示符窗口。你可以通过按下Win+R键,然后输入"cmd"并按下回车键来快速打开命令提示符窗口。 7. 在命令提示符窗口中,输入"adb version"命令来验证ADB工具是否成功安装。如果显示版本信息,则表示安装成功。 这样,你就成功在Windows安装ADB工具。你可以使用ADB工具来执行各种操作,如枚举设备、进入/退出ADB终端、文件传输、运行命令、查看系统日志等。具体的操作方法可以参考ADB工具的官方文档或其他相关教程。\[1\]\[2\]\[3\] #### 引用[.reference_title] - *1* [windows环境安装adb驱动](https://blog.csdn.net/zx54633089/article/details/128533343)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* *3* [Windows安装使用ADB简单易懂教程](https://blog.csdn.net/m0_37777700/article/details/129836351)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值