LAM:使用局部归因图理解和可视化超分网络
Interpreting Super-Resolution Networks with Local Attribution Maps (CVPR 2021)
School of Electrical and Information Engineering, The University of Sydney. Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences.
-
是不是只要加大感受野就能获得更好的性能呢?更大的感受野,或者多尺度的特征是否对于 SR 模型有效?
-
为什么 Attention 或者 Non-local 的操作可以帮助提升 SR 性能?
预测概率对输入I
的梯度
采用预测概率对输入I
的梯度作为归因图
使用积分梯度 (Integrated Gradients)来做归因
所谓归因,简单来说就是对于给定的输入图片I
和模型S
,我们想办法指出I
的哪些分量对模型的决策有重要影响,或者说对 I
的各个分量的重要性做个排序,用专业的话术来说那就是 "归因"。
-
假设输入的是
I
,还有一个基线图像I'
,模型是S
,假设是SR模型,表示是一种插值参数,则I'+
(I-I')表示了从基线图片
I'
到原始输入图片I
的变化过程
-
在LAM中,超分模型
F
再加上后面的检测器D
就相当于了一个分类模型,输出 LR 图片的某个 patch 里面是否有特定的特征。就可以计算这个标量对于 LR 图片的积分梯度了,这也就是 LAM 的核心思想。 -
-
2、Degradation-Aware Self-Attention Based Transformer for Blind Image Super-Resolution(arxiv2023)
Immersive and Interactive Multimedia Lab, Nanjing University of Aeronautics and Astronautics, Nanjing
-
MOCO学习一个退化特征
-
将这个退化特征用到了Swin transformer里面
-
不同之处就是把D应用到了每一个RSTB模块里面
-
SwinIR
效果
-
消融
-
实验
-
可视化