试验设计——均匀试验设计·好格子点法

本文探讨了好格子点法在均匀设计中的应用,通过实例展示了如何使用该方法构造U8(83)和U13(133)均匀设计,并计算中心偏差值。利用R语言的DiceDesign库,我们生成了相应的矩阵并评估了其中心化偏差,最终选择了合适的U型矩阵。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

试验设计——均匀试验设计·好格子点法

均匀设计的基本要素

在这里插入图片描述
#U型设计
在这里插入图片描述

好格子点法

在这里插入图片描述
在这里插入图片描述
例题:

在这里插入图片描述
在这里插入图片描述

习题(含代码)

在中心化偏差的意义下,考虑以下问题:
(a)使用好格子点法构造均匀设计 U 8 ( 8 3 ) U8(8^3) U8(83)并给出相应的中心偏差值 U 8 ( 8 3 ) U8(8^3) U8(83),当=8,s=3时,m=4,h8={1,3,5,7}
在这里插入图片描述
代码:

library(DiceDesign)
u=matrix(c(1:8,3,6,1,4,7,2,5,8,5k,2,7,4,1,6,3,8,7,6,5,4,3,2,1,8),8,4)
discrepancyCriteria(u)

结果:计算的中心化偏差为0.055.保留第一列,另外三列中选取两列组成的U型矩阵就是最终结果。
(b)使用好格子点法构造均匀设计U13(13^3),并给出相应的中心偏差值.
U 13 ( 1 3 3 ) U13(13^3) U13(133),当=13,s=3时,m=12,h8={1,2,3,4,5,6,7,8,9,10,11,12}
在这里插入图片描述
代码:

data <- read.table('data53.txt')
u <- as.matrix(data)
discrepancyCriteria(u)

结果:计算的中心化偏差为0.16。保留第一列,另外11列中选取两列组成的U型矩阵就是最终结果。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值