关于使用 Huggingface 中 datasets 库时,代码正确、运行报错的原理解析与解决方法

关于使用 Huggingface 中 datasets 库时,代码正确、运行报错的原理解析与解决方法

在使用 Huggingface 的 datasets 库创建和处理数据集时,你可能会遇到一种非常诡异的情况:代码看似正确,但运行时却报错,或者运行后没有生成预期结果。这篇博客将详细剖析这种问题的原因,并提供解决方案。

背景

我们在使用 datasets 库中的 GeneratorBasedBuilder 创建数据文件时,需要重写一些方法,例如 download_and_prepare 和 as_dataset。以下是一个典型的代码示例:


def _split_generators(self):
    """返回SplitGenerators。"""
    return [
        SplitGenerator(
            name=Split.TRAIN,
            gen_kwargs={
                "archives": _DATA_URL["train"],
                "split": "train",
            },
        ),
        SplitGenerator(
            name=Split.VALIDATION,
            gen_kwargs={
                "archives": _DATA_URL["val"],
                "split": "validation",
            }
        )
    ]

在这个示例中,我们已经定义了 train 和 validation 两种数据文件。但在运行以下代码时,依然会报错:

train_dataset = imagenet_builder.as_dataset(split="train")
ValueError: Unknown split "train". Should be one of ['validation'].

原因剖析

出现这种情况的原因是 datasets 库在运行后会生成默认的配置文件,通常保存在家目录的 .cache/huggingface/datasets 文件夹下面。当你再次运行含 datasets 库的源代码时,程序会直接使用之前生成的默认配置,而不是当前程序的设置。这就导致了即使代码已经正确修改,但运行结果却报错或者没有预期的结果。
解决方案

要解决这个问题,你需要删除生成的默认配置文件夹,让程序重新生成配置并使用当前代码的设置。具体步骤如下:

找到并删除默认配置文件夹:~/.cache/huggingface/datasetsrm -rf
重新运行你的 Python 代码:

train_dataset =imagenet_builder.as_dataset(split="train")

这样,程序会重新生成配置并使用当前代码的设置,问题就会得到解决。

总结

在使用 Huggingface 的 datasets 库时,如果遇到代码正确但运行报错或没有预期结果的问题,可能是因为程序在使用之前生成的默认配置文件。通过删除这些配置文件,程序会重新生成配置并使用当前代码的设置,从而解决问题。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值