自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(10)
  • 收藏
  • 关注

原创 DeepSeek-R1-Zero的复现调试(swanlab观测实验过程)

本文旨在对deepseek-r1-zero进行复现实验,详细介绍了从r1原理到代码实现,再到结果观测的整个过程。在实验中,采用了基石智算平台来实现GRPO(基于PPO的优化算法),并通过SwanLab监控实验过程,确保实验的每个阶段都能精确跟踪与调试。通过这一系列的实验步骤,本文希望帮助用户更好地理解基石智算平台的使用方式,并深入掌握GRPO的实现方法。希望读者在实验过程中能够加深对相关技术的理解,并能灵活应用于实际项目中。

2025-02-13 05:49:23 910

原创 如何做指令微调?一文轻松上手

在人工智能的快速发展中,指令微调(Instruction Tuning)成为了提升大型语言模型(LLM)能力的重要手段。与传统的训练方式不同,微调更多聚焦于在现有模型的基础上进行适应性调整,使其能够更好地执行特定任务或响应用户的指令。本文将带领大家一起深入了解指令微调的概念与实践方法,尤其是针对LLama2-Alpaca模型的微调实现。我们将从数据准备到微调代码的实现,再到如何使用SwanLab来查看微调的进展与结果,全面解析指令微调的整个过程。

2024-12-18 18:44:56 1796 1

原创 使用openMind完成一个简单的微调任务(使用swanlab可视化工具)

openMind Library是一个深度学习开发套件,通过简单易用的API支持模型预训练、微调、推理等流程。openMind Library通过一套接口兼容PyTorch和MindSpore等主流框架,同时原生支持昇腾NPU处理器,同时openMind Library可以和PEFTDeepSpeed等三方库配合使用,来加速模型微调效率。

2024-12-09 16:05:32 808

原创 DeepSeek-llm-7B-Chat微调教程(使用SwanLab可视化工具)

DeepSeek系列大模型由杭州深度求索高性价比:DeepSeek-V2模型以其史无前例的性价比著称,推理成本被降到每百万token仅1块钱,约等于Llama3 70B的七分之一,的七十分之一。架构创新:DeepSeek对模型架构进行了全方位创新,提出崭新的MLA(一种新的多头潜在注意力机制)架构,把显存占用降到了过去最常用的MHA架构的5%-13%,同时,独创的DeepSeekMoESparse结构,也把计算量降到极致。开源模型。

2024-12-04 14:38:20 3036

原创 常见的大模型微调各种参数都是什么意思,有什么用

想必很多人在初次接触大模型的时候,无论是训练还是推理都会接触很多参数,我当初学的时候其实一大堆的参数其实就算查了是什么意思,但是脑子里其实没有什么概念,比如learning rate、epoch、lora等等,这些参数大了还是小了对实验有什么影响,尤其是初学的时候找github上现成的微调框架,但是其实每一部分都看不懂是什么意思,微调也是调了个寂寞。这篇文章想把之前的踩坑的经验、还有各种参数的意义具象化展示给大家,希望给初学或者学了段时间的小伙伴一些帮助。

2024-12-03 20:51:08 1709

原创 BaiChuan2-7B-finetune完整微调代码(Swanlab可视化工具)

SwanLab是一款完全开源免费的机器学习日志跟踪与实验管理工具,为人工智能研究者打造。基于一个名为swanlab的python库可以帮助您在机器学习实验中记录超参数、训练日志和可视化结果能够自动记录logging、系统硬件、环境配置(如用了什么型号的显卡、Python版本是多少等等)可以完全离线运行,在完全内网环境下也可使用SwanLab官方文档 | 先进的AI团队协作与模型创新引擎Environment Card:实验参数卡片Charts:记录loss和accuracy。

2024-11-24 18:18:40 1170

原创 基于LangChain实现RAG(大模型使用通义千问)

RAG(Retrieval-Augmented Generation)是一种结合了检索和生成的方法,旨在提高自然语言处理任务的性能。相对于预训练和微调,RAG的优势在于能够利用外部知识源,如知识图谱或文档数据库,以增强模型的理解和生成能力。此外,RAG还可以通过检索相关信息来减少对大规模预训练数据的依赖,从而降低计算成本。

2024-11-14 19:38:45 1539

原创 AI芯片资料概述

AI芯片也被称为AI加速器或计算卡,从广义上讲只要能够运行人工智能算法的芯片都叫作 AI 芯片。但是通常意义上的 AI 芯片指的是针对人工智能算法做了特殊加速设计的芯片。

2024-10-12 14:09:52 1740

原创 Llama3微调实战:Swanlab可视化部署

使用swanlab可视化工具监控llama3微调过程

2024-06-18 19:55:02 1512

原创 用BERT实现古诗生成

之前在博客上查找些资料,想找一些能实现用bert进行古诗生成的代码进行训练,然后有利用tensorflow或者Paddlepaddle进行训练的,然后想用pytorch进行训练,于是就写了份用pytorch预训练的bert模型代码。#### 定义损失函数和优化器。

2024-06-16 16:54:45 1281 1

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除