自注意力机制(self-attention)

《Attention Is All You Need》

注意力机制

理解注意力:想象在一个嘈杂的房间听一群人讲话,会不自觉地将注意力集中在某些关键的人或话语上,以便更好地理解整个场景。
在自然语言处理中,注意力机制就类似这种“聚焦”的能力,它能够帮助模型关注输入文本中更重要部分,而不像以前的模型那样平等的对待每个单词。

  • 自注意力的计算

假设我们有一个句子“我爱自然语言处理”,首先会把每个单词变成一个数字向量来表示,类似给每个单词一个独特的身份编码。然后,自注意力机制会对每个单词做三件事:一产生查询向量,代表这个单词想要寻找的信息,比如“我”这个单词的查询向量可能是想要找和自己相关的动作或对象;二生成键向量,代表单词自身的一些特征,“我”的键向量就体现了“我”这个词的特性;三生成值向量,对输入单词信息的一种压缩表示。
计算每个单词的查询向量与其他单词的键向量的点积,得到一个表示它们之间关联程度分数,这个分数经过缩放和Softmax操作后,就变成了注意力权重,权重越大说明这个单词对另一个单词的关注度越高。最后,根据这些权重对应的值向量进行加权求和,得到每个单词的新表示,这个新表示综合了句子中其他单词的信息,让每个单词都能“感知”到整个句子的上下文。

直观理解加权求和过程

假设有一个句子“阳光照亮了房间”。对于单词“照亮”,在计算它的新表示时,会先得到它与其他单词(“阳光”“了”“房间”)的注意力权重。如果“阳光”与“照亮”的注意力权重较高,说明模型认为“阳光”对“照亮”这个动作的理解很重要。那么在加权求和过程中,“阳光”的值向量就会对“

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值