两点距离公式:
d=sqrt((x1-x2)(x1-x2)+(y1-y2)(y1-y2));
中点坐标公式:
x=(x1+x2)/2 y=(y1+y2)/2 ;
直线斜率:
k=(y2-y1)/(x2-x1);
多边形面积和叉乘
三角形面积算法:
(1)底×高/2;
(2)海伦公式:p = (a + b + c) / 2;
S = sqrt(p * (p - a) * (p - b) * (p - c));
(3)向量法:1 / 2 * a 叉乘 b;
叉乘:
平面上的两点的直角坐标分别为p1(x1,y1),p2(x2,y2)
(1)该两点相对坐标原点(0,0)的叉乘为m=x1y2-x2y1
if m>0 则相对坐标原点,点p1在点p2的顺时针方向
if m<0 则相对坐标原点,点p1在点p2的逆时针方向
if m=0 则原点和p1、p2在一条直线上
(2)该两点相对点p0(x0,y0)的叉积为m=(x1-x0)(y2-y0)-(x2-x0)(y1-y0)
if m>0 则相对p0点,点p1在点p2的顺时针方向
if m<0 则相对p0点,点p1在点p2的逆时针方向
if m=0 则p0和p1、p2在一条直线上
参考博客.