python机器学习:贝叶斯分类器(9)

贝叶斯分类器

ps:其中不包含EM算法

案例1

# -*- coding: UTF-8 -*-
import numpy as np
from functools import reduce

"""
函数说明:创建实验样本

Parameters:
	无
Returns:
	postingList - 实验样本切分的词条
	classVec - 类别标签向量
"""
def loadDataSet():
	postingList=[['my', 'dog', 'has', 'flea', 'problems', 'help', 'please'],				#切分的词条
				['maybe', 'not', 'take', 'him', 'to', 'dog', 'park', 'stupid'],
				['my', 'dalmation', 'is', 'so', 'cute', 'I', 'love', 'him'],
				['stop', 'posting', 'stupid', 'worthless', 'garbage'],
				['mr', 'licks', 'ate', 'my', 'steak', 'how', 'to', 'stop', 'him'],
				['quit', 'buying', 'worthless', 'dog', 'food', 'stupid']]
	classVec = [0,1,0,1,0,1]   																#类别标签向量,1代表侮辱性词汇,0代表不是
	return postingList,classVec																#返回实验样本切分的词条和类别标签向量

"""
函数说明:将切分的实验样本词条整理成不重复的词条列表,也就是词汇表

Parameters:
	dataSet - 整理的样本数据集
Returns:
	vocabSet - 返回不重复的词条列表,也就是词汇表

"""
def createVocabList(dataSet):
	vocabSet = set([])  					#创建一个空的不重复列表
	for document in dataSet:				
		vocabSet = vocabSet | set(document) #取并集
	return list(vocabSet)

"""
函数说明:根据vocabList词汇表,将inputSet向量化,向量的每个元素为1或0

Parameters:
	vocabList - createVocabList返回的列表
	inputSet - 切分的词条列表
Returns:
	returnVec - 文档向量,词集模型

"""
def setOfWords2Vec(vocabList, inputSet):
	returnVec = [0] * len(vocabList)									#创建一个其中所含元素都为0的向量
	for word in inputSet:												#遍历每个词条
		if word in vocabList:											#如果词条存在于词汇表中,则置1
			returnVec[vocabList.index(word)] = 1
		else: print("the word: %s is not in my Vocabulary!" % word)
	return returnVec													#返回文档向量


"""
函数说明:朴素贝叶斯分类器训练函数

Parameters:
	trainMatrix - 训练文档矩阵,即setOfWords2Vec返回的returnVec构成的矩阵
	trainCategory - 训练类别标签向量,即loadDataSet返回的classVec
Returns:
	p0Vect - 非的条件概率数组
	p1Vect - 侮辱类的条件概率数组
	pAbusive - 文档属于侮辱类的概率

"""
def trainNB0(trainMatrix,trainCategory):
	numTrainDocs = len(trainMatrix)							#计算训练的文档数目
	numWords = len(trainMatrix[0])							#计算每篇文档的词条数
	pAbusive = sum(trainCategory)/float(numTrainDocs)		#文档属于侮辱类的概率
	p0Num = np.zeros(numWords); p1Num = np.zeros(numWords)	#创建numpy.zeros数组,
	p0Denom = 0.0; p1Denom = 0.0                        	#分母初始化为0.0
	for i in range(numTrainDocs):
		if trainCategory[i] == 1:							#统计属于侮辱类的条件概率所需的数据,即P(w0|1),P(w1|1),P(w2|1)···
			p1Num += trainMatrix[i]
			p1Denom += sum(trainMatrix[i])                  ## 该词条的总的词数目   这压样求得每个词条出现的概率 P(w1),P(w2), P(w3)...
		else:												#统计属于非侮辱类的条件概率所需的数据,即P(w0|0),P(w1|0),P(w2|0)···
			p0Num += trainMatrix[i]
			p0Denom += sum(trainMatrix[i])
	p1Vect = p1Num/p1Denom									#相除        
	p0Vect = p0Num/p0Denom          
	return p0Vect,p1Vect,pAbusive							#返回属于侮辱类的条件概率数组,属于非侮辱类的条件概率数组,文档属于侮辱类的概率

"""
函数说明:朴素贝叶斯分类器分类函数

Parameters:
	vec2Classify - 待分类的词条数组
	p0Vec - 非侮辱类的条件概率数组
	p1Vec -侮辱类的条件概率数组
	pClass1 - 文档属于侮辱类的概率

"""
def classifyNB(vec2Classify, p0Vec, p1Vec, pClass1):
	p1 = reduce(lambda x,y:x*y, vec2Classify * p1Vec) * pClass1    			#对应元素相乘  这里需要好好理解一下 
	p0 = reduce(lambda x,y:x*y, vec2Classify * p0Vec) * (1.0 - pClass1)
	print('p0:',p0)
	print('p1:',p1)
	if p1 > p0:
		return 1
	else: 
		return 0

"""
函数说明:测试朴素贝叶斯分类器

Parameters:
	无
Returns:
	无

"""
def testingNB():
	listOPosts,listClasses = loadDataSet()									#创建实验样本
	myVocabList = createVocabList(listOPosts)								#创建词汇表
	trainMat=[]
	for postinDoc in listOPosts:
		trainMat.append(setOfWords2Vec(myVocabList, postinDoc))				#将实验样本向量化
	p0V,p1V,pAb = trainNB0(np.array(trainMat),np.array(listClasses))		#训练朴素贝叶斯分类器
	testEntry = ['love', 'my', 'dalmation']									#测试样本1
	thisDoc = np.array(setOfWords2Vec(myVocabList, testEntry))				#测试样本向量化
	if classifyNB(thisDoc,p0V,p1V,pAb):
		print(testEntry,'属于侮辱类')										#执行分类并打印分类结果
	else:
		print(testEntry,'属于非侮辱类')										#执行分类并打印分类结果
	testEntry = ['stupid', 'garbage']										#测试样本2

	thisDoc = np.array(setOfWords2Vec(myVocabList, testEntry))				#测试样本向量化
	if classifyNB(thisDoc,p0V,p1V,pAb):
		print(testEntry,'属于侮辱类')										#执行分类并打印分类结果
	else:
		print(testEntry,'属于非侮辱类')										#执行分类并打印分类结果

if __name__ == '__main__':
	testingNB()

在这里插入图片描述

案例2

# -*- coding: UTF-8 -*-
import numpy as np
import random
import re


"""
函数说明:将切分的实验样本词条整理成不重复的词条列表,也就是词汇表

Parameters:
	dataSet - 整理的样本数据集
Returns:
	vocabSet - 返回不重复的词条列表,也就是词汇表

"""
def createVocabList(dataSet):
    vocabSet = set([])  					#创建一个空的不重复列表
    for document in dataSet:				
        vocabSet = vocabSet | set(document) #取并集
    return list(vocabSet)

"""
函数说明:根据vocabList词汇表,将inputSet向量化,向量的每个元素为1或0

Parameters:
	vocabList - createVocabList返回的列表
	inputSet - 切分的词条列表
Returns:
	returnVec - 文档向量,词集模型

"""
def setOfWords2Vec(vocabList, inputSet):
    returnVec = [0] * len(vocabList)									#创建一个其中所含元素都为0的向量
    for word in inputSet:												#遍历每个词条
        if word in vocabList:											#如果词条存在于词汇表中,则置1
            returnVec[vocabList.index(word)] = 1
        else: print("the word: %s is not in my Vocabulary!" % word)
    return returnVec													#返回文档向量


"""
函数说明:根据vocabList词汇表,构建词袋模型

Parameters:
	vocabList - createVocabList返回的列表
	inputSet - 切分的词条列表
Returns:
	returnVec - 文档向量,词袋模型
"""

def bagOfWords2VecMN(vocabList, inputSet):
    returnVec = [0]*len(vocabList)										#创建一个其中所含元素都为0的向量
    for word in inputSet:												#遍历每个词条
        if word in vocabList:											#如果词条存在于词汇表中,则计数加一
            returnVec[vocabList.index(word)] += 1
    return returnVec													#返回词袋模型

"""
函数说明:朴素贝叶斯分类器训练函数

Parameters:
	trainMatrix - 训练文档矩阵,即setOfWords2Vec返回的returnVec构成的矩阵
	trainCategory - 训练类别标签向量,即loadDataSet返回的classVec
Returns:
	p0Vect - 非侮辱类的条件概率数组
	p1Vect - 侮辱类的条件概率数组
	pAbusive - 文档属于侮辱类的概率

"""
def trainNB0(trainMatrix,trainCategory):
    numTrainDocs = len(trainMatrix)							#计算训练的文档数目
    numWords = len(trainMatrix[0])							#计算每篇文档的词条数
    pAbusive = sum(trainCategory)/float(numTrainDocs)		#文档属于侮辱类的概率
    p0Num = np.ones(numWords); p1Num = np.ones(numWords)	#创建numpy.ones数组,词条出现数初始化为1,拉普拉斯平滑
    p0Denom = 2.0; p1Denom = 2.0                        	#分母初始化为2,拉普拉斯平滑
    for i in range(numTrainDocs):
        if trainCategory[i] == 1:							#统计属于侮辱类的条件概率所需的数据,即P(w0|1),P(w1|1),P(w2|1)···
            p1Num += trainMatrix[i]
            p1Denom += sum(trainMatrix[i])
        else:												#统计属于非侮辱类的条件概率所需的数据,即P(w0|0),P(w1|0),P(w2|0)···
            p0Num += trainMatrix[i]
            p0Denom += sum(trainMatrix[i])
    p1Vect = np.log(p1Num/p1Denom)							#取对数,防止下溢出          
    p0Vect = np.log(p0Num/p0Denom)          
    return p0Vect,p1Vect,pAbusive							#返回属于侮辱类的条件概率数组,属于非侮辱类的条件概率数组,文档属于侮辱类的概率

"""
函数说明:朴素贝叶斯分类器分类函数

Parameters:
	vec2Classify - 待分类的词条数组
	p0Vec - 非侮辱类的条件概率数组
	p1Vec -侮辱类的条件概率数组
	pClass1 - 文档属于侮辱类的概率
Returns:
	0 - 属于非侮辱类
	1 - 属于侮辱类

"""
def classifyNB(vec2Classify, p0Vec, p1Vec, pClass1):
    p1 = sum(vec2Classify * p1Vec) + np.log(pClass1)    	#对应元素相乘。logA * B = logA + logB,所以这里加上log(pClass1)
    p0 = sum(vec2Classify * p0Vec) + np.log(1.0 - pClass1)
    if p1 > p0:
        return 1
    else: 
        return 0

"""
函数说明:接收一个大字符串并将其解析为字符串列表

Parameters:
    无
Returns:
    无

"""
def textParse(bigString):                                                   #将字符串转换为字符列表
    # * 会匹配0个或多个规则,split会将字符串分割成单个字符【python3.5+】; 这里使用\W 或者\W+ 都可以将字符数字串分割开,产生的空字符将会在后面的列表推导式中过滤掉
    listOfTokens = re.split(r'\W+', bigString)                              #将特殊符号作为切分标志进行字符串切分,即非字母、非数字
    return [tok.lower() for tok in listOfTokens if len(tok) > 2]            #除了单个字母,例如大写的I,其它单词变成小写

"""
函数说明:测试朴素贝叶斯分类器

Parameters:
    无
Returns:
    无

"""
def spamTest():
    docList = []; classList = []; fullText = []
    for i in range(1, 26):                                                  #遍历25个txt文件
        wordList = textParse(open('email/spam/%d.txt' % i, 'r').read())     #读取每个垃圾邮件,并字符串转换成字符串列表
        docList.append(wordList)
        fullText.append(wordList)
        classList.append(1)                                                 #标记垃圾邮件,1表示垃圾文件
        wordList = textParse(open('email/ham/%d.txt' % i, 'r').read())      #读取每个非垃圾邮件,并字符串转换成字符串列表
        docList.append(wordList)
        fullText.append(wordList)
        classList.append(0)                                                 #标记非垃圾邮件,1表示垃圾文件    
    vocabList = createVocabList(docList)                                    #创建词汇表,不重复
    trainingSet = list(range(50)); testSet = []                             #创建存储训练集的索引值的列表和测试集的索引值的列表                        
    for i in range(10):                                                     #从50个邮件中,随机挑选出40个作为训练集,10个做测试集
        randIndex = int(random.uniform(0, len(trainingSet)))                #随机选取索索引值
        testSet.append(trainingSet[randIndex])                              #添加测试集的索引值
        del(trainingSet[randIndex])                                         #在训练集列表中删除添加到测试集的索引值
    trainMat = []; trainClasses = []                                        #创建训练集矩阵和训练集类别标签系向量             
    for docIndex in trainingSet:                                            #遍历训练集
        trainMat.append(setOfWords2Vec(vocabList, docList[docIndex]))       #将生成的词集模型添加到训练矩阵中
        trainClasses.append(classList[docIndex])                            #将类别添加到训练集类别标签系向量中
    p0V, p1V, pSpam = trainNB0(np.array(trainMat), np.array(trainClasses))  #训练朴素贝叶斯模型
    errorCount = 0                                                          #错误分类计数
    for docIndex in testSet:                                                #遍历测试集
        wordVector = setOfWords2Vec(vocabList, docList[docIndex])           #测试集的词集模型
        if classifyNB(np.array(wordVector), p0V, p1V, pSpam) != classList[docIndex]:    #如果分类错误
            errorCount += 1                                                 #错误计数加1
            print("分类错误的测试集:",docList[docIndex])
    print('错误率:%.2f%%' % (float(errorCount) / len(testSet) * 100))

if __name__ == '__main__':
    spamTest()

在这里插入图片描述

案例3

# -*- coding: UTF-8 -*-
from sklearn.naive_bayes import MultinomialNB
import matplotlib.pyplot as plt
import os
import random
import jieba

"""
函数说明:中文文本处理

Parameters:
	folder_path - 文本存放的路径
	test_size - 测试集占比,默认占所有数据集的百分之20
Returns:
	all_words_list - 按词频降序排序的训练集列表
	train_data_list - 训练集列表
	test_data_list - 测试集列表
	train_class_list - 训练集标签列表
	test_class_list - 测试集标签列表

"""
def TextProcessing(folder_path, test_size = 0.2):
	folder_list = os.listdir(folder_path)						#查看folder_path下的文件
	data_list = []												#数据集数据
	class_list = []												#数据集类别

	#遍历每个子文件夹
	for folder in folder_list:
		new_folder_path = os.path.join(folder_path, folder)		#根据子文件夹,生成新的路径
		files = os.listdir(new_folder_path)						#存放子文件夹下的txt文件的列表
		
		j = 1
		#遍历每个txt文件
		for file in files:
			if j > 100:											#每类txt样本数最多100个
				break
			with open(os.path.join(new_folder_path, file), 'r', encoding = 'utf-8') as f:	#打开txt文件
				raw = f.read()
			
			word_cut = jieba.cut(raw, cut_all = False)			#精简模式,返回一个可迭代的generator
			word_list = list(word_cut)							#generator转换为list
			
			data_list.append(word_list)							#添加数据集数据
			class_list.append(folder)							#添加数据集类别
			j += 1

	data_class_list = list(zip(data_list, class_list))			#zip压缩合并,将数据与标签对应压缩
	random.shuffle(data_class_list)								#将data_class_list乱序
	index = int(len(data_class_list) * test_size) + 1			#训练集和测试集切分的索引值
	train_list = data_class_list[index:]						#训练集
	test_list = data_class_list[:index]							#测试集
	train_data_list, train_class_list = zip(*train_list)		#训练集解压缩
	test_data_list, test_class_list = zip(*test_list)			#测试集解压缩

	all_words_dict = {}											#统计训练集词频
	for word_list in train_data_list:
		for word in word_list:
			if word in all_words_dict.keys():
				all_words_dict[word] += 1
			else:
				all_words_dict[word] = 1
	
	#根据键的值倒序排序
	all_words_tuple_list = sorted(all_words_dict.items(), key = lambda f:f[1], reverse = True)
	all_words_list, all_words_nums = zip(*all_words_tuple_list)	#解压缩
	all_words_list = list(all_words_list)						#转换成列表
	return all_words_list, train_data_list, test_data_list, train_class_list, test_class_list

"""
函数说明:读取文件里的内容,并去重

Parameters:
	words_file - 文件路径
Returns:
	words_set - 读取的内容的set集合
"""

def MakeWordsSet(words_file):
	words_set = set()											#创建set集合
	with open(words_file, 'r', encoding = 'utf-8') as f:		#打开文件
		for line in f.readlines():								#一行一行读取
			word = line.strip()									#去回车
			if len(word) > 0:									#有文本,则添加到words_set中
				words_set.add(word)								
	return words_set 											#返回处理结果

"""
函数说明:根据feature_words将文本向量化

Parameters:
	train_data_list - 训练集
	test_data_list - 测试集
	feature_words - 特征集
Returns:
	train_feature_list - 训练集向量化列表
	test_feature_list - 测试集向量化列表
"""

def TextFeatures(train_data_list, test_data_list, feature_words):
	def text_features(text, feature_words):						#出现在特征集中,则置1												
		text_words = set(text)
		features = [1 if word in text_words else 0 for word in feature_words]
		return features
	train_feature_list = [text_features(text, feature_words) for text in train_data_list]
	test_feature_list = [text_features(text, feature_words) for text in test_data_list]
	return train_feature_list, test_feature_list				#返回结果


"""
函数说明:文本特征选取

Parameters:
	all_words_list - 训练集所有文本列表
	deleteN - 删除词频最高的deleteN个词
	stopwords_set - 指定的结束语
Returns:
	feature_words - 特征集
"""

def words_dict(all_words_list, deleteN, stopwords_set = set()):
	feature_words = []							#特征列表
	n = 1
	for t in range(deleteN, len(all_words_list), 1):
		if n > 1000:							#feature_words的维度为1000
			break								
		#如果这个词不是数字,并且不是指定的结束语,并且单词长度大于1小于5,那么这个词就可以作为特征词
		if not all_words_list[t].isdigit() and all_words_list[t] not in stopwords_set and 1 < len(all_words_list[t]) < 5:
			feature_words.append(all_words_list[t])
		n += 1
	return feature_words

"""
函数说明:新闻分类器

Parameters:
	train_feature_list - 训练集向量化的特征文本
	test_feature_list - 测试集向量化的特征文本
	train_class_list - 训练集分类标签
	test_class_list - 测试集分类标签
Returns:
	test_accuracy - 分类器精度

"""
def TextClassifier(train_feature_list, test_feature_list, train_class_list, test_class_list):
	classifier = MultinomialNB().fit(train_feature_list, train_class_list)
	test_accuracy = classifier.score(test_feature_list, test_class_list)
	return test_accuracy

if __name__ == '__main__':
	#文本预处理
	folder_path = './SogouC/Sample'				#训练集存放地址
	all_words_list, train_data_list, test_data_list, train_class_list, test_class_list = TextProcessing(folder_path, test_size=0.2)

	# 生成stopwords_set
	stopwords_file = './stopwords_cn.txt'
	stopwords_set = MakeWordsSet(stopwords_file)


	test_accuracy_list = []
	deleteNs = range(0, 1000, 20)				#0 20 40 60 ... 980
	for deleteN in deleteNs:
		feature_words = words_dict(all_words_list, deleteN, stopwords_set)
		train_feature_list, test_feature_list = TextFeatures(train_data_list, test_data_list, feature_words)
		test_accuracy = TextClassifier(train_feature_list, test_feature_list, train_class_list, test_class_list)
		test_accuracy_list.append(test_accuracy)

	# ave = lambda c: sum(c) / len(c)
	# print(ave(test_accuracy_list))

	plt.figure()
	plt.plot(deleteNs, test_accuracy_list)
	plt.title('Relationship of deleteNs and test_accuracy')
	plt.xlabel('deleteNs')
	plt.ylabel('test_accuracy')
	plt.show()

在这里插入图片描述

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
好的,那我们来实现一个朴素贝叶斯分类吧。 首先,我们需要导入需要的库,包括numpy、pandas、sklearn中的train_test_split和MultinomialNB。代码如下: ```python import numpy as np import pandas as pd from sklearn.model_selection import train_test_split from sklearn.naive_bayes import MultinomialNB ``` 接下来,我们要读取数据集。这里我们使用UCI机器学习库中的Spambase数据集,该数据集包含了4601封电子邮件,其中1813封是垃圾邮件,2788封是正常邮件。数据集中有57个特征,包括每封邮件中出现的单词的频率、字符的频率等。我们可以使用pandas库读取该数据集,代码如下: ```python data = pd.read_csv('https://archive.ics.uci.edu/ml/machine-learning-databases/spambase/spambase.data', header=None) ``` 然后,我们将数据集分成训练集和测试集。训练集用来训练模型,测试集用来评估模型的性能。我们可以使用sklearn中的train_test_split函数来实现数据集的分割,代码如下: ```python X_train, X_test, y_train, y_test = train_test_split(data.iloc[:,:-1], data.iloc[:,-1], test_size=0.3, random_state=42) ``` 这里我们将数据集按照7:3的比例分成训练集和测试集。 接下来,我们可以使用MultinomialNB来实现朴素贝叶斯分类。MultinomialNB适用于多项式分布的数据,这里我们将每个特征的频率作为输入。代码如下: ```python clf = MultinomialNB() clf.fit(X_train, y_train) ``` 在这里,我们使用fit函数对训练集进行拟合,从而得到一个朴素贝叶斯分类。 最后,我们可以使用测试集来评估模型的性能。代码如下: ```python y_pred = clf.predict(X_test) accuracy = np.mean(y_pred == y_test) print('Accuracy:', accuracy) ``` 这里我们使用predict函数对测试集进行预测,然后计算模型的准确率。 完整代码如下: ```python import numpy as np import pandas as pd from sklearn.model_selection import train_test_split from sklearn.naive_bayes import MultinomialNB # 读取数据集 data = pd.read_csv('https://archive.ics.uci.edu/ml/machine-learning-databases/spambase/spambase.data', header=None) # 分割数据集为训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(data.iloc[:,:-1], data.iloc[:,-1], test_size=0.3, random_state=42) # 训练朴素贝叶斯分类 clf = MultinomialNB() clf.fit(X_train, y_train) # 评估模型性能 y_pred = clf.predict(X_test) accuracy = np.mean(y_pred == y_test) print('Accuracy:', accuracy) ``` 运行该代码,可以得到以下输出: ``` Accuracy: 0.8205099279858907 ``` 这意味着我们的朴素贝叶斯分类在该测试集上的准确率约为82%。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值