CCF 2013 12-5 I’m stuck
9/5/2021 6:02:16 PM
题目
问题描述
给定一个R行C列的地图,地图的每一个方格可能是’#’, ‘+’, ‘-’, ‘|’, ‘.’, ‘S’, ‘T’七个字符中的一个,分别表示如下意思:
‘#’: 任何时候玩家都不能移动到此方格;
‘+’: 当玩家到达这一方格后,下一步可以向上下左右四个方向相邻的任意一个非’#‘方格移动一格;
‘-’: 当玩家到达这一方格后,下一步可以向左右两个方向相邻的一个非’#‘方格移动一格;
‘|’: 当玩家到达这一方格后,下一步可以向上下两个方向相邻的一个非’#‘方格移动一格;
‘.’: 当玩家到达这一方格后,下一步只能向下移动一格。如果下面相邻的方格为’#’,则玩家不能再移动;
‘S’: 玩家的初始位置,地图中只会有一个初始位置。玩家到达这一方格后,下一步可以向上下左右四个方向相邻的任意一个非’#‘方格移动一格;
‘T’: 玩家的目标位置,地图中只会有一个目标位置。玩家到达这一方格后,可以选择完成任务,也可以选择不完成任务继续移动。如果继续移动下一步可以向上下左右四个方向相邻的任意一个非’#'方格移动一格。
此外,玩家不能移动出地图。
请找出满足下面两个性质的方格个数:
1. 玩家可以从初始位置移动到此方格;
2. 玩家不可以从此方格移动到目标位置。
输入格式
输入的第一行包括两个整数R 和C,分别表示地图的行和列数。(1 ≤ R, C ≤ 50)。
接下来的R行每行都包含C个字符。它们表示地图的格子。地图上恰好有一个’S’和一个’T’。
###输出格式
如果玩家在初始位置就已经不能到达终点了,就输出“I’m stuck!”(不含双引号)。否则的话,输出满足性质的方格的个数。
样例输入
5 5
--+-+
..|#.
..|##
S-+-T
####.
样例输出
2
样例说明
如果把满足性质的方格在地图上用’X’标记出来的话,地图如下所示:
–±+
…|#X
…|##
S-±T
####X
题解:
Key Word : 图论、正反DFS
#include<bits/stdc++.h>
#include<iostream>
using namespace std;
const int maxn = 55;
int row,col;
int tx,ty;//终点坐标
int sx,sy;//起点坐标
char G[maxn][maxn];
int cons1[maxn][maxn],cons2[maxn][maxn];
//cons [i][j] = 1 表示i行j列 可以到达
int dx[4] = {-1,0,1,0},dy[4] = {0,1,0,-1};
// 判断当前点(x,y)是否可走
// k 表示方向,用0~3表示
bool check(int x, int y , int k){
char c = G[x][y];
// 可上下左右四个方向走
if(c == '+' || c == 'S' || c == 'T') return true;
// 只能左右走,k为1或者3,即奇数
if(c == '-' && k %2 == 1) return true;
// 只能上下走,k为0或2,即偶数
if(c == '|' && k % 2 == 0) return true;
// 只能往下走,k为2
if( c == '.' && k == 2) return true;
// 其他情况都是不能走
return false;
}
void dfs1(int x,int y){
cons1[x][y] = 1;
for(int i=0;i<4;i++){
int xx = x + dx[i],yy = y + dy[i];
if(xx <0 || xx >= row || yy <0 || yy >= col || G[xx][yy] == '#')
continue;
if(cons1[xx][yy]) continue;
if(check(x,y,i)) dfs1(xx,yy);
}
}
void dfs2(int x,int y){
cons2[x][y] = 1;
for(int i=0;i<4;i++){
int xx = x + dx[i],yy = y + dy[i];
if(xx <0 || xx >= row || yy <0 || yy >= col || G[xx][yy] == '#')
continue;
if(cons2[xx][yy]) continue;
if(check(xx,yy,i^2)) dfs2(xx,yy);
}
}
int main()
{
cin >> row >> col;
for(int i=0;i<row;i++)
for(int j=0;j<col;j++)
{
cin>>G[i][j];
if(G[i][j] == 'T')
{
tx = i; ty = j;
}
if(G[i][j] == 'S')
{
sx = i; sy = j;
}
}
//从起点开始遍历
dfs1(sx,sy);
//从终点反向遍历
dfs2(tx,ty);
if(cons1[tx][ty] == 0)
cout<<"I'm stuck!";
else{
int ans = 0;
for(int i=0;i<row;i++)
for(int j=0;j<col;j++){
if(cons1[i][j] && !cons2[i][j])
ans ++;
}
cout << ans <<"\n";
}
return 0;
}
理解:
首先是图论 里面经典部分 dx dy的应用 并且用这个来决定方向
之后DFS的书写 并且巧妙的使用反向DFS
DFS确定了能到达范围 并且标记 最后得出答案!