机器学习中的关键组件

本文概述了机器学习中的关键概念,包括数据集的构成、目标函数的选择、监督学习(如回归和分类)、优化算法(如梯度下降),以及无监督学习和强化学习的区别。深度学习的发展和神经网络的结构也被提及,强调了深度学习如何简化特征工程并打破不同领域的应用界限。
摘要由CSDN通过智能技术生成

机器学习中的关键组件

数据

        每个数据集由一个个样本组成,大多时候,它们遵循独立同分布。样本有时也叫作数据点或数据实例,通常每个样本由一组称为特征或协变量的属性组成。机器学习会根据这些属性进行预测,预测得到的称为标签或目标。

目标函数

        在机器学习中,需要定义对模型的优劣程度的度量,这个度量在大多数情况下是“可视化”的,这被称为目标函数。通常定义一个目标函数,并希望优化它到最小值。

        当任务在试图预测数值时,最常见的损失函数是平方误差,即预测值与实际值之差的平方。当试图解决分类问题时,最常见的目标函数是最小化错误率,错误率即预测与实际情况不符的样本比率。有些目标函数(平方误差)很容易被优化,有些目标函数(错误率)由于不可微性或其他复杂性难以直接优化。

        通常,损失函数是根据模型参数定义的,并取决于数据集。在一个数据集上,可以通过最小化总损失来学习模型参数的最佳值。该数据集由一些为训练而采集的样本组成,称为训练数据集或训练集。可用数据集通常可以分为两部分:训练数据集用于拟合模型参数,测试数据集用于评估拟合的模型。然后观察模型在这两部分数据集上的性能。当一个模型在训练集上表现良好,但不能推广到测试集时,这个模型被称为过拟合的。

优化算法

深度学习中,大多数流行的优化算法通常基于一种基本方法--梯度下降

机器学习分类及其问题

监督学习

        监督学习擅长在“给定输入特征”的情况下预测标签。每个“特征-标签”对都称为一个样本。即使标签是未知的,样本也可以指代输入特征。目标是生成一个模型,该模型能够将任何输入特征映射到标签(即预测)。

        监督学习在训练参数时,为模型提供了一个数据集,其中每个样本都有真实的标签。在给定一组特定的可用数据的情况下,估计未知事物的概率。

监督学习的学习过程

        从已知大量数据样本中随机选取一个子集,为每个样本获取真实标签。有时,这些样本已有标签;有时,这些样本可能需要被人工标注。这些输入和相应标签一起构成了训练数据集。

        选择有监督的学习算法,它将训练数据集作为输入,并输出一个“已完成学习的模型”

        将之前没有见过的样本特征放到这个“已完成学习的模型”中,使用模型的输出作为相应标签的预测

监督学习的模型

回归

回归问题是由输出决定的,此时的目标是生成一个模型,使它的预测值非常接近实际标签值。

分类

分类问题希望模型能够预测样本属于哪个类别,其正式称为类。

分类器可能会输出图像是猫的概率为0.9,也就是分类器确定图像描绘的是一只猫的概率为90%。预测类别的概率传达了模型的不确定性。

无监督学习

        数据中不含有“目标”的机器学习问题通常被称为“无监督学习”

无监督学习主要解决的问题

①聚类问题;②主成分分析问题;③因果关系和概率图模型;

④生成对抗网络(提供一种合成数据的方法)

与环境互动

        无论是监督学习还是无监督学习,我们都会预先获取大量数据,然后启动模型,不再与环境交互。所有的学习都是在算法与环境断开后进行的,被称为离线学习

        离线学习的优点:我们可以孤立地进行模式识别,而不必分心于其他问题

        缺点:能解决的问题相当有限

强化学习

        智能体在一系列的时间步骤上与环境交互。在每个特定时间点,智能体从环境接受一些观测,并且必须选择一个动作,然后通过某种机制(执行器)将其传输回环境,最终智能体从环境中获得奖励。此后,新一轮循环开始。

神经网络的起源

神经网络的核心是当今大多数网络中都可以找到的几个关键原则:

        ①线性和非线性处理单元的交替,通常称为层

        ②使用链式规则(反向传播)一次性调整网络中的全部参数

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值