就生长速度而言,良性肿瘤和恶性肿瘤都可以发展缓慢或迅速,但后者往往比前者扩散得更快。
恶性肿瘤的组织被用来获得感染,癌症最突出的症状之一是,保护健康组织的基底膜被破坏。根据其广泛扩散的能力,恶性肿瘤可能会利用淋巴或循环系统向更远的生理器官扩散。
深度学习使用多个相互连接的人工神经元来学习真实表示的简化语句的模式。创建Transformer模型是为了解决自然语言处理问题。
三种不同的深度学习方法:从零开始训练CNN结构的基线方法;用超声图像进一步训练预先训练的VGG16 CNN结构的转移方法;调整深度学习参数以克服过拟合的微调学习方法。
经过调整的预先训练的VGG16模型具有97%的准确率,提供了最好的性能指标。利用已被训练的深度卷积网络(CNN)的转移特征来识别乳腺超声图像中的癌症。使用了1125例乳腺超声病例和2393个感兴趣区域(ROI)的数据集。每个ROI都被分为良性、囊性或恶性。利用预先训练好的CNN,从每个感兴趣区域中收集特征并用于构建支持向量机(SVM)分类器,以区分良恶性病变和非恶性(良性+囊性)病变。
机器学习中的AUC介绍https://blog.csdn.net/qq_36798713/article/details/118498326直方图均衡化https://blog.csdn.net/wanglang3081/article/details/16923573灰度图https://blog.csdn.net/qq_46017342/article/details/130792328
视觉Transformer
视觉转换器(VIT)是一种深度学习体系结构,它使用最初为自然语言处理(NLP)任务开发的转换器体系结构来解决计算机视觉问题。该模型在各种图像识别任务中的性能一直优于传统卷积神经网络(CNN)。VIT模型将输入图像分解为不重叠的小块,然后将其缩小到固定大小。为了嵌入这些块,使用一个可学习的嵌入矩阵来平坦化和固定向量的大小。
然后,为了传递空间位置信息,将位置嵌入添加到这些块嵌入中。
VIT模型的变换层由前馈网络和多头自注意力过程组成,是在块向量序列之后生成的。这些层使模型能够收集本地和全局数据,并识别块之间的上下文链接。
利用与输入令牌相关联的嵌入向量来使用线性层和SoftMax激活函数来生成类概率。
使用像ImageNet这样的标记图像数据集和监督学习技术来训练VIT模型,该模型能够识别输入照片中的模式和特征,并在训练过程中将它们连接到适当的类别标签。
批量归一化和层归一化https://blog.csdn.net/qq_44397802/article/details/128452207