常见论文审稿意见回复对策(计算机视觉领域)

引言

在计算机视觉领域,论文投稿是展示研究成果、推动学术进步的重要途径。然而,面对审稿人提出的意见,如何做出有效且专业的回复,往往成为许多研究者,尤其是新手,感到棘手的问题。审稿意见可能涉及实验设计、方法创新、结果分析等多个方面,回复时不仅需要展现对研究的深刻理解,还需体现严谨的学术态度。本文将针对计算机视觉领域常见的审稿意见,提供实用的回复策略及回复示例,帮助研究者提升论文质量,顺利通过审稿流程。

本文给出的经验仅供参考,需结合具体问题具体分析。

1. 与性能更高的论文进行比较

在论文审稿过程中,审稿人要求将你的方法与性能更高的论文进行比较,这是一种常见的修改意见,通常目的是为了验证你提出方法的实际效果和价值。以下是应对这种情况的详细步骤:


1) 确定参考论文

  • 分析要求:仔细阅读审稿人的意见,明确需要比较的论文是哪一篇或是哪类方法。
  • 收集论文信息:如果审稿人未明确具体论文,选择与你研究主题相关且在领域内具有权威性的高性能方法。
  • 注重细节
    • 确认参考论文的方法是否适用于你的数据集或实验环境。
    • 了解该论文的实验设置、性能指标和基准数据集。

2) 重现对比方法

如果参考论文没有提供开源代码,可能需要自行重现方法:

  • 获取代码
    • 检查论文是否提供了代码(如 GitHub)。
    • 如果没有代码,可以尝试联系论文作者。
  • 自行实现
    • 根据论文描述实现对比方法。
    • 确保实现与原论文方法一致,并尽可能复现其性能。

3) 设置公平对比实验

为了避免偏向性,需要设计公平的对比实验:

  1. 相同数据集
    • 使用与参考方法一致的公开数据集。
    • 如果数据集不同,详细说明差异并评估可能的影响。
  2. 一致的评估指标
    • 确保使用与参考论文相同的性能指标(如准确率、F1 分数等)。
  3. 相同的实验设置
    • 控制变量一致,例如训练集与测试集划分、超参数设置、硬件环境等。

4) 解释对比结果

对比结果不一定要求你的方法在所有方面都胜出,重点是体现方法的价值:

  1. 全面分析
    • 在结果中展示你的方法在哪些方面优于参考方法。
    • 如果有不足之处,尝试分析原因(例如适用范围、计算效率)。
  2. 附加贡献
    • 强调你的方法的其他优势,例如更高的效率、可解释性、适用性或创新性。
  3. 定性分析
    • 除了量化指标外,可以通过示例、可视化(如图像分割结果对比)展示方法的实际效果。

5) 调整论文内容

在论文中加入以下部分,以回应审稿人的建议:

  • 实验部分
    • 新增对比实验,并详细描述实验设置。
    • 用表格或图表清晰展示对比结果。
  • 讨论部分
    • 对结果进行定量与定性分析,解释你的方法相较参考论文的优劣势。
    • 强调你的研究在某些关键点上的创新性或适用性。
  • 引用和致谢
    • 引用被比较的论文,并在致谢中感谢审稿人提出的宝贵意见。

6) 如果无法实现对比

在某些情况下,可能无法实现审稿人要求的对比(例如数据集或代码不可用):

  1. 详细说明原因
    • 在回复审稿人时,明确说明为什么无法完成对比(如实验条件不匹配、资源限制)。
  2. 替代对比
    • 提供类似的方法进行对比,并解释替代方法的合理性。
  3. 理论分析
    • 如果实验对比不可行,可以从理论上分析你的方法与参考方法的优势和局限性。

7) 回复审稿人的策略

在回复中需要做到:

  • 礼貌与专业:感谢审稿人提出的建设性意见。
  • 清晰与逻辑:用清晰的语言说明你进行了哪些对比,或者为什么未能完成。
  • 强调贡献:即使结果略有劣势,也要突出你方法的独特价值。

示例回复模板:

感谢审稿人的建议:
感谢您建议将我们的方法与[参考论文]进行对比。我们已根据您的意见进行了实验,并新增了对比实验部分(见第X节)。实验结果表明,我们的方法在指标A上达到了XX%的提升,而在指标B上略低于参考方法,但具有更高的计算效率(XX%)。
对于无法对比的部分:
由于参考方法的数据集不可用,我们选择了最接近的数据集进行实验,结果在附加材料X中详细展示。


2. 审稿人要求对比的方法没有代码且性能高

审稿人要求新增高性能方法对比,且有部分方法没有代码、结果图,无法直接对比,甚至性能高于你的方法的情况。以下是应对策略:


1) 面对未提供代码或结果图的文献

对于未提供代码和结果图的文献,可以采取以下方法:

1.1 理由说明

在回复审稿人时,清楚说明为什么无法直接进行对比。可以这样表述:

  • 提供代码和结果图是公平对比的基础,但由于这几篇文献未公开相关资源,我们无法保证复现的准确性。
  • 如果可以,尝试联系这些论文的作者,说明你的需求并请求代码或结果图。如果对方没有回复,可以在回复审稿人时提到这一尝试。

1.2 替代策略

针对无法直接对比的方法,提供间接的替代方法:

  • 理论分析:对这些方法的结构、假设、适用场景与性能特点进行理论比较,强调你方法的独特优势(如xxxx)。
  • 已有公开结果:如果这些文献在领域内的 benchmark 网站上有公开的性能指标,可以引用这些指标作为间接对比。
  • 简化版本复现:如果文献描述清晰,且有详细的网络结构,可以尝试部分复现其核心方法,但需明确指出是你的复现结果,并解释可能的偏差。

2) 面对性能更高的公开方法

对于性能超过你的方法的文献,以下策略可以帮助你处理不利对比结果:

2.1 强调不同指标和综合表现

即使某些指标不如其他方法,也可以通过强调整体性能和方法特性来增加说服力:

  • 强调你的方法在哪些指标上表现优异(例如特定场景、特定类别的图像)。
  • 提供整体的性能-效率权衡分析,例如:
    • 是否在计算复杂度(如参数量、推理速度)上更优。
    • 是否在特定数据集(如小样本数据或边缘细化需求强的数据)上有明显优势。
  • 使用 Radar 图(雷达图)或 Bar Chart 等可视化方法,直观展示性能分布。

2.2 分析局限性并转化为贡献

对比中不必回避你的方法性能不如某些方法的情况,但需要合理解释:

  • 分析性能差距的来源。例如,如果你的方法优化了xxxx,可能在性能上略逊色。
  • 强调你的方法的附加价值,例如:
    • 是否在xxxx、特定数据集上的表现更优。
    • 是否具有更强的可解释性、适用性或稳定性。

2.3 强调创新性

即使某些指标不最优,也可以通过突出方法的独特创新性来增强影响力。


3) 修改论文内容

为回应审稿人,建议修改论文以下部分:

3.1 增加对比实验

  • 在实验部分新增性能更高的公开方法的对比。
  • 提供公平的实验设置,并说明性能差异的原因。
  • 如果参考文献无法直接对比,清楚说明原因并补充间接分析。

3.2 丰富分析部分

  • 在 Discussion 或 Ablation Study 中分析你的方法在不同场景下的表现,强调其优势和适用性。
  • 提供额外的定性分析,例如通过可视化图示例对比不同方法在xxxx等方面的表现。

3.3 明确方法定位

  • 明确指出你的方法的目标是解决哪些具体问题(如xxxx),以避免审稿人单纯关注性能排名。

4) 回复审稿人的策略

在回复审稿人时,尽量礼貌和详细,以下是一个模板:

感谢审稿人的意见:
我们非常感谢您提出的建议,帮助我们提高论文的完整性和对比分析的严谨性。根据您的建议,我们增加了对以下方法的实验对比:

  • 公开方法: 对于提供代码的 [论文 A] 和 [论文 B],我们进行了完整的对比实验,结果见 [表 X] 和 [图 Y]。虽然在某些指标上我们的方法略逊于这些方法,但我们的方法在[xxxx]和[xxxx]等方面表现更优。
  • 未公开方法: 对于 [论文 C]、[论文 D] 等,由于未提供代码或结果图,我们尝试联系了原作者,但未能获得响应。为尽量弥补,我们从 [benchmark Z] 引用了这些方法的公开性能指标,并从理论上分析了这些方法与我们方法的区别和适用性。详细分析见 [第 X 节]。

关于性能的讨论:
尽管某些指标上我们的方法略逊,但我们的方法在 [优势 A] 和 [优势 B] 等方面有独特的创新性和应用潜力,我们在论文中进一步强调了这些贡献。


3. 审稿人要求分析你的方法在某数据集上未优于某方法的原因

审稿人要求分析你的方法在xxx数据集上未优于mmm方法的原因,这种问题需要从方法、数据集特性以及模型设计的适用性等多角度进行专业分析。以下是一个全面、礼貌且逻辑清晰的回复思路和示例。


回复思路

  1. 感谢审稿人
    表达对审稿人提出的具体问题的感谢,认可其帮助论文提升质量的作用。

  2. 提供现象的分析

    • 数据集特性 分析:强调 xxx数据集可能具有的独特特性(如xxx),并与 mmm 方法的优势关联。
    • 方法设计 分析:说明 mmm 的技术特性可能更适合这些数据集的特点,而你的方法在哪些场景下更具优势。
    • 避免负面语言:不要过于贬低自己的方法,而是强调方法的特定适用性和综合价值。
  3. 补充实验或可视化(可选)
    如果时间和条件允许,可以通过补充分析图(如可视化结果图)进一步说明你的方法在特定方面的优势。

  4. 总结并补充贡献
    总结对原因的分析,并强调你的方法在其他数据集或特定任务上的性能和贡献。


示例回复

感谢审稿人指出问题:
我们非常感谢审稿人提出的具体问题,这为我们深入分析方法在不同数据集上的表现提供了宝贵的机会。

关于性能现象的分析:
从 Table 1 可以看到,在xxx数据集上,我们的方法未优于 mmm。这一现象可能由以下几个原因导致:

  1. 数据集特性
    • xxx 数据集包含xxxx的目标,且xxxx。在这种场景中,mmm 基于 xx的xxxx能力可能对xxxx更具优势。
  2. 方法设计的适用性
    • 我们的方法在设计上更注重xxxx,这在xxx的场景中更为突出,例如在 [其他数据集,如 xxx] 上性能显著优于 mmm。

补充分析和未来改进方向:
为了进一步验证这一现象,我们在论文的 [附录/补充材料] 中提供了几组xxx的可视化结果。这些结果表明,我们的方法在xxx检测效果更佳,但在xxx场景下表现略逊于 mmm。
在未来的工作中,我们计划通过引入xxx来进一步提升模型在此类数据集上的性能。
总结:
尽管我们的方法在 xxx上的部分指标略逊于mmm,但在其他数据集上展现了更全面的优势,例如在xxx等方面具有显著的改进。我们非常感谢审稿人提出这一问题,使我们能够更加全面地分析方法的适用性与局限性。


注意事项

  • 客观评价对比方法:在分析 mmm 的优点时,尽量使用中性语言,避免引发争议。
  • 平衡优势和劣势:充分承认劣势的同时,强调你的方法在其他方面的贡献和价值。
  • 视觉化补充(如果可行):用结果图对比或具体场景表现,直观说明你的方法的优劣点。

4. 自己方法的参数量不如其他方法少

审稿人关注到mmm的参数量比你的方法更小,可能反映出审稿人希望你更深入分析方法的效率与性能权衡。以下是如何应对这一问题的策略和回复模板。


回复思路

  1. 感谢审稿人
    对审稿人提出这个技术性问题表示感谢,表明你理解问题的重要性。

  2. 分析参数量差异原因

    • 方法设计 角度分析:解释为什么自己的方法的设计需要更多参数(如模块复杂性xxx的需求)。
    • 效率权衡 角度分析:指出虽然参数量较大,但自己方法在性能上的提升如何体现了设计的价值。
  3. 对比效率和性能的权衡
    如果你的方法在推理速度或实际使用场景中有优势(即使参数较大),可以突出这些优势。若无明显优势,则承认这是一个需要改进的地方,并提出未来优化的方向。

  4. 回应上一问题的结合点
    在结合上一问题时,进一步强调自己方法的创新性和特定场景中的性能优势,避免因单纯的参数量问题影响整体评价。


示例回复

感谢审稿人的意见:
我们感谢审稿人指出mmm的参数量小于ours的问题,这为我们深入思考模型设计的效率与性能权衡提供了宝贵的机会。

关于参数量差异的分析:
从 Table 2 可以看到,ours的参数量高于mmm。这一差异主要来源于以下几点:

  1. 方法设计的复杂性
    • ours中引入了xxxxxxx。
    • ours通过增加xxxx分支,提高了对xxxx检测精度,但也增加了模型的参数量。
  2. 设计目标的差异
    • mmm的设计更多依赖于xxxx,xxx的设计使其模型较为轻量化。
    • ours的目标是xxxxx,这对复杂网络结构提出了更高的需求。

关于效率与性能的权衡:
我们承认,ours的参数量较高可能在一定程度上影响了模型的轻量化特性。然而,这一设计带来的性能提升是显著的。例如,在 [数据集 X] 和 [数据集 Y] 上,ours在 [指标 Z] 上超越了mmm。
此外,我们进行了额外的实验,比较了两种方法的推理时间和内存占用(见附录/表 X),结果表明尽管参数量较大,ours的推理速度与mmm相当,这进一步证明了模型在实际应用中的可行性。

总结:
综合审稿人提出的意见,我们认为这反映了ours的方法设计在追求性能和创新的同时,确实存在轻量化方面的改进空间。在未来的工作中,我们计划通过以下方式优化模型:

  1. 减少冗余模块:探索更轻量的模块设计。
  2. 参数共享:借鉴mmm等方法,降低模型复杂度。

我们再次感谢审稿人提出的问题,使我们能够更全面地反思模型的优劣和改进方向。


注意事项

  • 避免过度防御性:审稿人提出问题并不一定意味着批评,而是希望你能更清晰地解释方法的设计决策。
  • 突出适用场景:如果ours在某些任务上有明显优势(如xxxx),一定要在回复和论文中清楚强调。
  • 承认不足并规划改进:适当承认参数量大的局限性,并提供合理的改进方向,显示你对问题的深入思考和积极态度。

5. 审稿人对性能提升和研究动机提出质疑

审稿人对性能提升和研究动机提出质疑,这是比较关键的意见。需要从 动机清晰化性能贡献解释、以及 整体价值定位 三个方面来正面回应,同时要态度开放,展现出改进的意愿。

以下是具体的回复策略和示例:


1) 回复策略

1.1 表达感谢

感谢审稿人对动机和性能问题的关注,表明你重视这一反馈,并将努力让论文的贡献更加清晰。

1.2 动机清晰化

  • 强调文章的研究背景和具体问题:指出现有方法在某些方面的不足(如xxxx)。
  • 明确你的创新点:解释为什么你的方法可以填补这些不足,即便整体性能提升有限,也有其特定价值。

1.3 性能提升的价值解释

  • 强调在特定指标、特定场景或特定数据集上的优势。例如,如果xxxx或模型效率是你的方法的亮点,要用数据和可视化支持。
  • 对比分析现有方法的局限性,说明你的方法在这些方面的改进为何有意义。

1.4 承认不足并提出改进

如果性能确实不是全面领先,坦诚说明原因(如设计偏向特定任务)并提出后续工作计划,这可以展现出你的学术态度和对改进的考虑。

1.5 强调综合贡献

即使单一性能提升有限,也可以通过强调整体的理论创新、方法适用性或潜在应用价值,进一步增强文章的说服力。


2) 示例回复

感谢审稿人的意见:
我们感谢审稿人对本文提出的宝贵反馈,特别是对动机和性能提升的关注,这为我们进一步完善文章提供了重要的方向。

关于研究动机的说明:
本文的研究动机源于当前xxx领域的两个主要挑战:

  1. xxx不足:许多现有方法(包括 mmm 等)在xxx(尤其是xxx下)容易xxx(不好)的结果。
  2. xxx的限制:现有方法在xxxx较为局限,导致在xxxx上存在一定不足。

针对上述问题,我们提出了基于 xxxxxx 的ours方法,旨在提高xxx检测精度,并增强xxxx能力。这种设计不仅针对特定问题提供了解决方案,也为xxx任务引入了新的思路。

关于性能表现的分析:
我们理解审稿人对性能提升的期待。从xxx的结果可以看出,虽然本文方法在整体性能上未能显著超越所有现有方法,但在以下方面表现出独特优势:

  1. xxx:通过附录中的结果图可视化对比(见附录 Fig. X),可以观察到ours能够更准确地还原xxx,特别是在 [数据集 X 和 Y] 中表现尤为突出。
  2. 特定场景的鲁棒性:在 [特定数据集或任务] 中,ours对xxx的检测精度优于现有方法(如在 [指标 Z] 上提升了 X%)。
  3. 理论创新:尽管性能提升有限,本文方法在xxxx网络的设计上提供了新的视角,可为未来的研究提供启发。

关于改进与后续工作:
我们认识到,本文方法在整体性能上的提升有限,可能受以下因素影响:

  • 模型复杂性与轻量化的权衡:在设计时,我们优先考虑了xxxx,未对参数量和整体效率进行充分优化。
  • 适用场景的限制:本文方法在特定任务中的优势更为明显,而在通用性上仍需改进。
    在未来的工作中,我们计划引入更高效的xxxx技术,进一步提升模型的通用性和整体性能。

总结:
我们非常感谢审稿人提出的反馈,这促使我们更加深入地分析和完善研究动机与方法贡献。我们希望,通过补充动机说明和进一步优化,本文能为xxx领域提供有意义的参考与启发。


3) 应对建议

  • 强调独特性:对于性能略逊的问题,务必要从方法创新和应用场景上展示独特价值。
  • 补充实验支持:如果可能,补充xxxx的可视化对比,直观展现优势。
  • 承认不足但不自降价值:承认性能不足的同时,突出你的方法对领域的贡献,并以积极的态度展望未来改进。

6. 增加训练时间和推理时间对比

审稿人提到提到训练时间和推理时间,这是评价一个方法实际应用价值的重要因素,尤其是在实际部署场景中。因此,在回复时,我们应该充分考虑这一点,明确指出方法在计算效率方面的表现,甚至可以通过实验数据支持这一点。以下是如何回应这一问题的策略和回复示例:


1) 回复策略

1.1 感谢审稿人

首先感谢审稿人提出的重要问题,表明你会在回复中对训练时间和推理时间做出解释。

1.2 提供实验数据

如果你已经测量过训练时间和推理时间,提供具体的时间数据对比。对于训练时间,通常可以给出一个平均的训练周期时间或者模型总训练时间;对于推理时间,给出每个图像或每批次处理所需的时间,通常使用FPS等指标。

1.3 训练时间和推理时间的分析

  • 训练时间:如果你的模型训练时间较长,解释其原因(如模型复杂性、数据量等),并展示这种训练时间是如何带来性能提升的。
  • 推理时间:分析推理时间是否符合实际应用需求,强调xxx的优势(如果使用了该模块)。

1.4 提出未来优化方向

如果训练时间或推理时间较长,可以提及未来可能的优化方向,如模型压缩、量化或其他加速方法。


2) 示例回复

感谢审稿人的反馈:
我们感谢审稿人提出的关于训练时间和推理时间的建议,这确实是衡量一个方法实用性的重要标准,我们在下文中对这些问题进行了详细分析。

关于训练时间:
我们对训练过程进行了多次实验,使用了 [数据集 X] 进行训练,以下是训练时间的详细数据:

  • 训练时间:使用 ours 模型在 [GPU型号] 上,每个训练周期的时间大约为 [时间],总训练时间为 [总时间]。相较于一些轻量化模型(如 xxx),ours的训练时间确实较长,主要原因在于网络结构复杂性和xxx模块的计算需求。
  • 然而,我们注意到,尽管训练时间较长,ours 在xxxx精度方面的提升是显著的,尤其在 [数据集 X] 和 [数据集 Y] 上表现出优势。

关于推理时间:
在推理时间方面,我们也进行了详细的测试:

  • 单图像推理时间:在 [GPU型号] 上,使用 ours进行单图像推理的时间为 [时间]。与现有的 [对比方法] 相比,推理时间略长,原因同样是由于模型结构更复杂,尤其是在xxxxxx的过程中需要更多计算资源。
  • 然而,在某些应用场景中,推理时间的增加是可以接受的,特别是在精度要求较高的任务中,模型的推理速度和准确性之间的平衡非常重要。

未来优化方向:
我们意识到推理时间和训练时间可能会影响模型的实际应用。为此,我们计划在未来的工作中进行以下优化:

  1. 模型压缩:通过剪枝、量化等技术减少冗余参数,从而提高推理速度。
  2. 加速推理:探索使用更高效的硬件加速(如 [硬件加速类型])以及针对推理的优化算法(如 [优化算法])来减少计算开销。
  3. 更高效的训练策略:我们还会尝试通过 [例如更高效的优化方法、分布式训练] 等策略来进一步缩短训练时间。

总结:
我们理解训练时间和推理时间是非常重要的实际考虑因素。尽管 ours在这些方面存在一定的挑战,但其在目标精度上的提升也为特定应用场景提供了显著的价值。我们计划通过未来的研究进一步优化效率,以便在实际应用中实现更好的平衡。


3) 注意事项

  • 数据支持:提供实际的训练和推理时间数据,尤其是在不同硬件配置上的表现。
  • 与对比方法的对比:对比时可以明确指出推理速度的优劣,甚至给出如每秒帧数(FPS)的数值。
  • 务实的承认不足:如果推理时间较长,诚实承认并提出未来的优化方向,这能够展示你对现实应用挑战的认识。
  • 对未来工作的承诺:强调对效率优化的关注,并表示将在未来工作中继续进行性能与效率的平衡。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值