化妆课之眉妆课

标准眉
所有的眉型都是在标准眉型的基础上进行提拉 延伸 变形
不管任何一个风格都会用上的那就是标准眉型
不同时间段流行不同的眉型
在这里插入图片描述
基本的标准眉型特点(掌握这些特点才能去变换各种眉型):在这里插入图片描述
眉头和眼头平齐,眉峰的位置在鼻翼和眼珠外侧连线的延长线上,眉尾的位置在鼻翼和外眼角连线的延长线上,整体上眉尾比眉头稍微高一点,同时在眉色上 眉头淡色 到眉腰渐浓 到后面满满加深颜色。

标准眉的形状
每一条标准眉型都是眉头最低,然后慢慢向上或者向外平直拉伸,眉尾的落点位置不可以比眉头低,(可以用眉笔或者笔状物做一个参考)在这里插入图片描述
眉尾的位置比眉头更低的话,那么多余的眉毛就要修掉,眉型的走势都是从眉头开始向上再往下,如果是平眉的话眉尾也要和眉头在一条水平线上,不要🈶️下挂的趋势。

眉的长度:眉头不要比眼头更后,可以跟眼头平齐。

眉尾:是鼻翼与眼尾的延长线。眉尾不能比眼尾更短。

眉毛的宽度:不要过细或者过粗,大概三到五毫米。

眉毛边缘上虚下实会有立体感,实一定要做好,

眉毛整体要均匀眉头到眉峰到眉尾

眉色要和头发一致眉毛颜色比头发浅一色
眉毛的走势要与眼睛一致,眉眼之间的距离标准一点五到2⃣️厘米。
把比眉头低的位置杂毛修掉在这里插入图片描述

内容概要:本文档《opencv高频面试题.docx》涵盖了OpenCV的基础概念、图像处理操作、特征提取与匹配、目标检测与机器学习、实际编程题、性能优化以及进阶问题。首先介绍了OpenCV作为开源计算机视觉库,支持图像/视频处理、目标检测、机器学习等领域,应用于安防、自动驾驶、医学影像、AR/VR等方面。接着详细讲述了图像的存储格式(如Mat类)、通道的概念及其转换方法。在图像处理部分,讲解了图像灰度化、二值化、边缘检测等技术。特征提取方面,对比了Harris和Shi-Tomasi角点检测算法,以及SIFT、SURF、ORB的特征提取原理和优缺点。目标检测部分介绍了Haar级联检测原理,并阐述了如何调用深度学习模型进行目标检测。文档还提供了几个实际编程题示例,如读取并显示图像、图像旋转、绘制矩形框并保存等。最后,探讨了性能优化的方法,如使用cv2.UMat(GPU加速)、减少循环等,以及相机标定、光流等进阶问题。 适合人群:对计算机视觉有一定兴趣,具备一定编程基础的学习者或从业者。 使用场景及目标:①帮助学习者掌握OpenCV的基本概念和技术;②为面试准备提供参考;③为实际项目开发提供技术指导。 阅读建议:由于内容涵盖广泛,建议读者根据自身需求有选择地深入学习相关章节,并结合实际编程练习加深理解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值