Pytorch学习笔记(2)自动求导

主要总结一下用到的一些函数

1.requires_grad

requires_grad设置为True,它将开始追踪(track)在其上的所有操作,这样就可以利用链式法则进行梯度传播。

x = torch.arange(4.0, requires_grad=True)  # 1.将梯度附加到想要对其计算偏导数的变量

2.grad_fn

该属性即创建该Tensor的Function, 就是说该Tensor是不是通过某些运算得到的,若是,则grad_fn返回一个与这些运算相关的对象,否则是None

  • 示例1:
x = torch.ones(2, 2, requires_grad=True)
print(x)
print(x.grad_fn)
tensor([[1., 1.],[1., 1.]], requires_grad=True)
None
  • 示例2:
x = torch.ones(2, 2, requires_grad=True)
y = x + 2
print(y)
print(y.grad_fn)
tensor([[3., 3.],[3., 3.]], grad_fn=<AddBackward>)
<AddBackward object at 0x1100477b8>

3.is_leaf

注意x是直接创建的,所以它没有grad_fn, 而y是通过一个加法操作创建的,所以它有一个为的grad_fn。
像x这种直接创建的称为叶子节点,叶子节点对应的grad_fn是None。

print(x.is_leaf, y.is_leaf) # True False

4.requires_grad_()

用in-place的方式改变requires_grad属性

a = torch.randn(2, 2) # 缺失情况下默认 requires_grad = False
a = ((a * 3) / (a - 1))
print(a.requires_grad) # False
a.requires_grad_(True) #***********
print(a.requires_grad) # True
b = (a * a).sum()
print(b.grad_fn)
False
True
<SumBackward0 object at 0x118f50cc0>

5.backward()

backward()用来完成所有梯度计算
注意在y.backward()时,如果y是标量,则不需要为backward()传入任何参数;否则,需要传入一个与y同形的Tensor。

x = torch.ones(2, 2, requires_grad=True)
y = x + 2
z = y * y * 3
out = z.mean()
print(z, out)
out.backward() # 等价于 out.backward(torch.tensor(1.))
print(x.grad)
tensor([[27., 27.],[27., 27.]], grad_fn=<MulBackward>) tensor(27., grad_fn=<MeanBackward1>)

tensor([[4.5000, 4.5000],[4.5000, 4.5000]])

在这里插入图片描述

6.grad.zero_()

上述语句用来“清除”x的梯度值,也就是重新赋值为0。需要注意的是,只有当x被求过一次梯度的时候,这个函数才能使用,否则会报错。

# 再来反向传播一次,注意grad是累加的
out2 = x.sum()
out2.backward()
print(x.grad)

out3 = x.sum()
x.grad.zero_() #**********
out3.backward()
print(x.grad)
tensor([[5.5000, 5.5000],
        [5.5000, 5.5000]])
tensor([[1., 1.],
        [1., 1.]])

7.backward(w)

不允许张量对张量求导,只允许标量对张量求导,求导结果是和自变量同形的张量。所以必要时我们要把张量通过将所有张量的元素加权求和的方式转换为标量,举个例子,假设y由自变量x计算而来,w是和y同形的张量,则y.backward(w)的含义是:先计算l = torch.sum(y * w),则l是个标量,然后求l对自变量x的导数。

这部分推荐一个博客总结的很好
https://blog.csdn.net/weixin_45021364/article/details/105194187

对于表达式y.backward(z) (y、z为同形张量)的计算过程,实际上将y与z加权求和得到标量m,然后用m对x求导得到结果,也就是说实际上有这样一步计算m=torch.sum(y*z)
在这里插入图片描述

x = torch.tensor([1.0, 2.0, 3.0, 4.0], requires_grad=True)
y = 2 * x
z = y.view(2, 2)
print(z)
v = torch.tensor([[1.0, 0.1], [0.01, 0.001]], dtype=torch.float)
z.backward(v)
print(x.grad)
tensor([[2., 4.],[6., 8.]], grad_fn=<ViewBackward>)
tensor([2.0000, 0.2000, 0.0200, 0.0020])

上面代码中z.backward(v)根据图片中的推导就是v与dz/dx的相乘
另外,针对向量对向量的求导我看也有用y.sum().backward()

8.detach()

detach()将其从追踪记录中分离出来,这样就可以防止将来的计算被追踪,这样梯度就传不过去。此外,还可以用with torch.no_grad()将不想被追踪的操作代码块包裹起来,这种方法在评估模型的时候很常用,因为在评估模型时,我们并不需要计算可训练参数(requires_grad=True)的梯度。

x = torch.arange(4.0, requires_grad=True)
y = x * x
u = y.detach()
z = u * x

z.sum.backward()
x.grad == u
tensor([True,True,True,True])

再来看看中断梯度追踪的例子:

x = torch.tensor(1.0, requires_grad=True)
y1 = x ** 2 
with torch.no_grad():
    y2 = x ** 3
y3 = y1 + y2
print(x.requires_grad)
print(y1, y1.requires_grad) # True
print(y2, y2.requires_grad) # False
print(y3, y3.requires_grad) # True

输出:

True
tensor(1., grad_fn=<PowBackward0>) True
tensor(1.) False
tensor(2., grad_fn=<ThAddBackward>) True

可以看到,上面的y2是没有grad_fn而且y2.requires_grad=False的,而y3是有grad_fn的。

y3.backward()
print(x.grad)
tensor(2.)

为什么是2呢?y3 = y1 + y2 =x2+ x3
由于 y2的定义是被torch.no_grad():包裹的,所以与 y2有关的梯度是不会回传的,只有与 y1有关的梯度才会回传,即x2对x求导

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
PyTorch中,可以通过调用`backward()`方法来计算对loss的输入求导,即计算模型参数的梯度。这个方法会自动计算计算图中所有需要求导的节点的梯度,并将梯度保存在相应的张量的`.grad`属性中。 以下是一个简单的示例,假设我们有一个包含两个线性层的神经网络,输入为`x`,输出为`y`,然后我们想要计算对模型参数的梯度。 ```python import torch import torch.nn as nn # 定义神经网络模型 class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.fc1 = nn.Linear(2, 3) self.fc2 = nn.Linear(3, 1) def forward(self, x): x = torch.relu(self.fc1(x)) x = self.fc2(x) return x # 创建神经网络模型 net = Net() # 随机生成输入x和标签y x = torch.randn(1, 2) y = torch.randn(1, 1) # 计算模型输出 y_pred = net(x) # 计算loss loss = nn.functional.mse_loss(y_pred, y) # 计算对模型参数的梯度 loss.backward() # 输出模型参数的梯度 print(net.fc1.weight.grad) print(net.fc1.bias.grad) print(net.fc2.weight.grad) print(net.fc2.bias.grad) ``` 这里我们首先定义了一个包含两个线性层的神经网络模型,并创建了一个实例`net`。然后我们随机生成一个输入`x`和对应的标签`y`。接着进行前向传播,计算模型输出`y_pred`,并计算对应的均方误差loss。最后调用`loss.backward()`方法,计算对模型参数的梯度。模型参数的梯度会保存在相应的张量的`.grad`属性中。 需要注意的是,调用`backward()`方法前需要确保计算图中所有需要求导的节点都已经被计算过,否则会报错。此外,如果需要多次计算梯度,需要在每次计算前先将梯度清零,可以通过调用`zero_grad()`方法实现。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值