20.🔗本章代码笔记📓链接(需要🪜):(01_the_machine_learning_landscape.ipynb - Colab (google.com))
如果你不想通过上面的官方网址下载本章的笔记,还可以在本篇博文的附件中下载笔记!但我更推荐你支持原版的书和原版的网址
21.参考答案原文及其中文翻译:
Machine Learning is about building systems that can learn from data.
机器学习是关于构建能够从数据中学习的系统。Learning means getting better at some task, given some performance measure.
学习意味着在某些任务上变得更好,这是根据某些性能度量来衡量的。Machine Learning is great for complex problems for which we have no algorithmic solution, to replace long lists of hand-tuned rules, to build systems that adapt to fluctuating environments, and finally to help humans learn (e.g., data mining).
机器学习非常适合那些我们没有算法解决方案的复杂问题,用来替代长长的手工调整规则列表,构建能够适应波动环境的系统,最终帮助人类学习(例如,数据挖掘)。A labeled training set is a training set that contains the desired solution (a.k.a. a label) for each instance.
一个被标记的训练集是一个训练集,它为每个实例包含了期望的解决方案(即标签)。The two most common supervised tasks are regression and classification.
两种最常见的监督任务是回归和分类。Common unsupervised tasks include