1. 机器学习基本知识(5)——练习题(参考答案)

20.🔗本章代码笔记📓链接(需要🪜):(01_the_machine_learning_landscape.ipynb - Colab (google.com)

如果你不想通过上面的官方网址下载本章的笔记,还可以在本篇博文的附件中下载笔记!但我更推荐你支持原版的书和原版的网址


21.参考答案原文及其中文翻译:

  1. Machine Learning is about building systems that can learn from data.
    机器学习是关于构建能够从数据中学习的系统。

    Learning means getting better at some task, given some performance measure.
    学习意味着在某些任务上变得更好,这是根据某些性能度量来衡量的。

  2. Machine Learning is great for complex problems for which we have no algorithmic solution, to replace long lists of hand-tuned rules, to build systems that adapt to fluctuating environments, and finally to help humans learn (e.g., data mining).
    机器学习非常适合那些我们没有算法解决方案的复杂问题,用来替代长长的手工调整规则列表,构建能够适应波动环境的系统,最终帮助人类学习(例如,数据挖掘)。

  3. A labeled training set is a training set that contains the desired solution (a.k.a. a label) for each instance.
    一个被标记的训练集是一个训练集,它为每个实例包含了期望的解决方案(即标签)。

  4. The two most common supervised tasks are regression and classification.
    两种最常见的监督任务是回归和分类。

  5. Common unsupervised tasks include

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

鸥梨菌Honevid

心想事成

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值