深度学习
七号门房
这个作者很懒,什么都没留下…
展开
-
Batch-Norm
https://blog.csdn.net/qq_25737169/article/details/79048516转载 2022-01-11 22:35:20 · 158 阅读 · 0 评论 -
Pytorch 实现 AlexNet 网络
1. LeNet 和 AlexNet 网络架构2.相比于LeNet,AlexNet 改进在全连接层后面增加了Dropout 用来防止模型过拟合将激活函数由Sigmoid 改为 Relu,以降低梯度消失的概率下采样层由AvgPooling改为MaxPooling3. 模型层设计# 构建模型net = nn.Sequential( # 这里,我们使用一个11*11的更大窗口来捕捉对象。 # 同时,步幅为4,以减少输出的高度和宽度。 # 另外,输出通道的数目远大于LeN原创 2022-01-06 10:11:58 · 460 阅读 · 0 评论 -
pytorch实现 LeNet 网络
LeNet1. 网络架构图2. 网络实现net = nn.Sequential( nn.Conv2d(1,6,kernel_size=5,padding=2), # (1,6,28,28) nn.Sigmoid(), # (1,6,28,28) nn.AvgPool2d(kernel_size=2,stride=2),# (1,6,14,14) 【(28-2+2)/2 = 14】 nn.Conv2d(6,16,kernel_size=5),# (6,16,10,原创 2022-01-05 22:40:36 · 650 阅读 · 0 评论 -
torch.nn.Linear()中weight的初始化问题
1. 系统默认初始化当我们没有进行初始化权重操作时,发现系统已经有了默认值,如下所示查看官网文档可以发现,这些初始化的值服从均匀分布 U(-k\sqrt{k}k,k\sqrt{k}k),其中k = 1/输入层2. 自定义初始化weight首先编写初始化函数init_weight(),在该函数中,nn.init.normal()可以将权重初始化为正态分布,此处也可以初始化为其他值。# 初始化weightdef init_weights(m): if type(m) == nn.Li原创 2022-01-03 16:05:03 · 7229 阅读 · 0 评论 -
矩阵计算【动手学深度学习v2】
1. 标量导数原创 2021-12-31 12:35:54 · 469 阅读 · 0 评论