Pytorch 实现 AlexNet 网络

1. LeNet 和 AlexNet 网络架构

在这里插入图片描述

2.相比于LeNet,AlexNet 改进

  • 在全连接层后面增加了Dropout 用来防止模型过拟合
  • 将激活函数由Sigmoid 改为 Relu,以降低梯度消失的概率
  • 下采样层由AvgPooling改为MaxPooling

3. 模型层设计

# 构建模型
net = nn.Sequential(
    # 这里,我们使用一个11*11的更大窗口来捕捉对象。
    # 同时,步幅为4,以减少输出的高度和宽度。
    # 另外,输出通道的数目远大于LeNet
    nn.Conv2d(1, 96, kernel_size=11, stride=4, padding=1), nn.ReLU(),
    nn.MaxPool2d(kernel_size=3, stride=2),
    # 减小卷积窗口,使用填充为2来使得输入与输出的高和宽一致,且增大输出通道数
    nn.Conv2d(96, 256, kernel_size=5, padding=2), nn.ReLU(),
    nn.MaxPool2d(kernel_size=3, stride=2),
    # 使用三个连续的卷积层和较小的卷积窗口。
    # 除了最后的卷积层,输出通道的数量进一步增加。
    # 在前两个卷积层之后,汇聚层不用于减少输入的高度和宽度
    nn.Conv2d(256, 384, kernel_size=3, padding=1), nn.ReLU(),
    nn.Conv2d(384, 384, kernel_size=3, padding=1), nn.ReLU(),
    nn.Conv2d(384, 256, kernel_size=3, padding=1), nn.ReLU(),
    nn.MaxPool2d(kernel_size=3, stride=2),
    nn.Flatten(),
    # 这里,全连接层的输出数量是LeNet中的好几倍。使用dropout层来减轻过拟合
    nn.Linear(6400, 4096), nn.ReLU(),
    nn.Dropout(p=0.5),
    nn.Linear(4096, 4096), nn.ReLU(),
    nn.Dropout(p=0.5),
    # 最后是输出层。由于这里使用Fashion-MNIST,所以用类别数为10,而非论文中的1000
    nn.Linear(4096, 10))

整体代码

import torch
from torch import nn
from torchvision import datasets
from torch.utils import data
from torchvision import transforms

batch_size = 128
lr = 0.01
resize = 224
# 准备数据集
trans = [transforms.ToTensor()]
trans.insert(0, transforms.Resize(resize))
trans = transforms.Compose(trans)

train_data = datasets.FashionMNIST(root='./train_Fashiondata',train=True,transform = trans,download=True)
test_data = datasets.FashionMNIST(root='./test_Fashiondata',train=False,transform = trans,download=True)

train_iter = data.DataLoader(train_data,batch_size=batch_size,shuffle=True)
test_iter = data.DataLoader(test_data,batch_size=batch_size,shuffle=False)

# 构建模型
net = nn.Sequential(
    # 这里,我们使用一个11*11的更大窗口来捕捉对象。
    # 同时,步幅为4,以减少输出的高度和宽度。
    # 另外,输出通道的数目远大于LeNet
    nn.Conv2d(1, 96, kernel_size=11, stride=4, padding=1), nn.ReLU(),
    nn.MaxPool2d(kernel_size=3, stride=2),
    # 减小卷积窗口,使用填充为2来使得输入与输出的高和宽一致,且增大输出通道数
    nn.Conv2d(96, 256, kernel_size=5, padding=2), nn.ReLU(),
    nn.MaxPool2d(kernel_size=3, stride=2),
    # 使用三个连续的卷积层和较小的卷积窗口。
    # 除了最后的卷积层,输出通道的数量进一步增加。
    # 在前两个卷积层之后,汇聚层不用于减少输入的高度和宽度
    nn.Conv2d(256, 384, kernel_size=3, padding=1), nn.ReLU(),
    nn.Conv2d(384, 384, kernel_size=3, padding=1), nn.ReLU(),
    nn.Conv2d(384, 256, kernel_size=3, padding=1), nn.ReLU(),
    nn.MaxPool2d(kernel_size=3, stride=2),
    nn.Flatten(),
    # 这里,全连接层的输出数量是LeNet中的好几倍。使用dropout层来减轻过拟合
    nn.Linear(6400, 4096), nn.ReLU(),
    nn.Dropout(p=0.5),
    nn.Linear(4096, 4096), nn.ReLU(),
    nn.Dropout(p=0.5),
    # 最后是输出层。由于这里使用Fashion-MNIST,所以用类别数为10,而非论文中的1000
    nn.Linear(4096, 10))

# 初始化参数
def init_weights(m):
  if type(m) == nn.Linear or type(m) == nn.Conv2d:
    nn.init.xavier_uniform_(m.weight)

net.apply(init_weights)
# 使用GPU
device = torch.device("cuda:0"if torch.cuda.is_available() else "cpu")
net.to(device)

# 构建优化函数
optimizer = torch.optim.SGD(net.parameters(), lr=lr)

# 构建损失函数
loss = nn.CrossEntropyLoss()

# 编写训练代码
def train(epoches):
  running_loss = 0.0
  for i,(X,y) in enumerate(train_iter):
    X,y = X.to(device),y.to(device)
    y_hat = net(X)
    l = loss(y_hat,y)
    optimizer.zero_grad()
    l.backward()
    optimizer.step()
    running_loss += l.item()
    if i % 100 == 99:
      print('[%d,%5d loss: %.3f' % (epoches+1,i + 1,running_loss/100))
      running_loss = 0.0

# 编写测试代码
def test():
    correct = 0
    total = 0
    with torch.no_grad():
        for data in test_iter:
            images,labels = data
            images, labels = images.to(device), labels.to(device)
            outputs = net(images)
            
            _,predicted = torch.max(outputs.data,dim=1)
            total += labels.size(0)

            correct += (predicted==labels).sum().item()
    print("正确率 %d %%"% (100* correct / total))
  
for k in range(20):
  train(k)
  test()
  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值