torch.nn.Linear()中weight的初始化问题

本文介绍了深度学习模型中权重初始化的重要性。系统默认使用均匀分布U(-k√k,k√k)进行初始化,其中k=1/输入层。同时,展示了如何自定义权重初始化函数init_weight(),使用nn.init.normal_()将权重初始化为正态分布,标准差为0.01。并给出了一个具体的网络结构示例,展示如何应用自定义初始化函数到网络的权重上。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 系统默认初始化

当我们没有进行初始化权重操作时,发现系统已经有了默认值,如下所示
在这里插入图片描述
查看官网文档可以发现,这些初始化的值服从均匀分布 U(- k \sqrt{k} k , k \sqrt{k} k ),其中k = 1/输入层
在这里插入图片描述

2. 自定义初始化weight

首先编写初始化函数init_weight(),在该函数中,nn.init.normal()可以将权重初始化为正态分布,此处也可以初始化为其他值。

# 初始化weight
def init_weights(m):
    if type(m) == nn.Linear:
        nn.init.normal_(m.weight, std=0.01)

#编写网络层结构        
net = nn.Sequential(nn.Flatten(),
                    nn.Linear(784, 256),
                    nn.ReLU(),
                    nn.Linear(256, 10))
# 将网络中的weight进行初始化
net.apply(init_weights);
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值