1.反向传播
误差反向传播,是一种与最优化方法结合使用的,用来训练人工神经网络的常见方法。利用误差反向传播计算每个权重损失函数的梯度,然后通过最优化方法更新权重值,使得损失函数最小化。
具体过程为:正向传播求损失,反向传播回传误差。每一个神经元都可根据误差修正每层的权重。
前向传播:先将数据输入到输入层,输入层-->隐藏层-->输出层,通过激活函数计算损失。
反向传播:通过梯度下降算法从输出层-->隐藏层-->输入层,链式求导,使损失函数最小化。
2.RNN
RNN,即循环神经网络。首先,需要明确的一点是,RNN与CNN最大的区别就是RNN的处理结果要与前一个输入和后一个输入有关,例如文字识别,语言翻译等。因为RNN具有一定的记忆功能,而CNN是静态的,所以此时就需要用到RNN。
一对多的RNN建模
3.CNN
CNN,即卷积神经网络。要求数据样本得是LLD,即独立同分布数据。CNN是静态输出的形式,不具备记忆功能。
CNN神经网络有着许多概念,卷积,池化,激活函数等等。
4.Transformer
Transformer是一种基于注意力机制的神经网络模型,相比于传统的循环神经网络模型,Transformer模型具有更好的并行化能力和更短的训练时间,在处理长序列任务方面表现出色,因此在自然语言处理领域得到了广泛应用。
把Transformer看做一个黑盒,例如经过他将中文翻译成英文,其内部构造如下:
而encoder中,是注意力机制+前反馈网络
注意力机制中的记忆力得分,又是通过矩阵运算得到的。