第一周:python与 深度学习基础 学习笔记

1.反向传播

误差反向传播,是一种与最优化方法结合使用的,用来训练人工神经网络的常见方法。利用误差反向传播计算每个权重损失函数的梯度,然后通过最优化方法更新权重值,使得损失函数最小化。

具体过程为:正向传播求损失,反向传播回传误差。每一个神经元都可根据误差修正每层的权重。

前向传播:先将数据输入到输入层,输入层-->隐藏层-->输出层,通过激活函数计算损失。

反向传播:通过梯度下降算法从输出层-->隐藏层-->输入层,链式求导,使损失函数最小化。

2.RNN

RNN,即循环神经网络。首先,需要明确的一点是,RNN与CNN最大的区别就是RNN的处理结果要与前一个输入和后一个输入有关,例如文字识别,语言翻译等。因为RNN具有一定的记忆功能,而CNN是静态的,所以此时就需要用到RNN。

                        一对多的RNN建模

3.CNN

CNN,即卷积神经网络。要求数据样本得是LLD,即独立同分布数据。CNN是静态输出的形式,不具备记忆功能。

CNN神经网络有着许多概念,卷积,池化,激活函数等等。

4.Transformer 

Transformer是一种基于注意力机制的神经网络模型,相比于传统的循环神经网络模型,Transformer模型具有更好的并行化能力和更短的训练时间,在处理长序列任务方面表现出色,因此在自然语言处理领域得到了广泛应用。

把Transformer看做一个黑盒,例如经过他将中文翻译成英文,其内部构造如下:

 

而encoder中,是注意力机制+前反馈网络

注意力机制中的记忆力得分,又是通过矩阵运算得到的。 

 

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值